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Abstract

We develop a quantitative theory of business cycles with coordination failures. Because

of demand complementarities and increasing returns, firms seek to coordinate production and

multiple equilibria arise. We use a global game approach to discipline equilibrium selection and

show that the unique dynamic equilibrium exhibits multiple steady states. Coordination on high

production may fail after a large transitory shock, pushing the economy in a quasi-permanent

recession. Our calibrated model rationalizes various features of the 2007-2009 recession and

its recovery. Government spending, while generally harmful, can increase welfare when the

economy is transitioning between steady states. Other policy instruments are preferable to fix

miscoordination.
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1 Introduction

Over the post-war period, the United States economy has shown a remarkable tendency to revert

back to its long-run trend after recessionary episodes. In contrast, its evolution in the aftermath

of the 2007-2009 recession has been startling. After the trough of the recession was reached in the

second quarter of 2009, most major economic aggregates started growing again but never caught

up with their previous trends. As Figure 1 shows below, real GDP seems to have settled on a

parallel but lower growth path from which it has not moved since, despite the COVID-19 recession

of 2020.1
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Figure 1: Evolution of US real GDP per capita over 1985-2023

We propose a quantitative theory of coordination failures that can account for this pattern. At

the heart of the mechanism are demand complementarities and increasing returns that link firms’

production decisions: the choice by one firm to scale up production generates additional income

that raises the demand for other firms’ products, thereby increasing their incentives to produce.

The presence of this complementarity opens up the possibility of miscoordination and multiple

equilibria. To discipline equilibrium selection and explore the model’s quantitative and normative

implications, we propose a global approach and show that such techniques can be applied in a

dynamic general equilibrium context. Two main insights emerge from the theory. First, because

of the coordination motives, strong self-reinforcing forces appear that can maintain the economy

in a depressed state after a recession. More specifically, multiple steady states may arise: one with

1Figure 13 in the Appendix shows that the conclusion that the economy has been performing below trend since
2007Q4 is robust to various definitions of the trend.
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high output and high demand, the other one with low output and low demand. Sufficiently large

transitory shocks can hinder coordination on high production and trigger a transition from the

high to the low steady state: the economy then becomes stuck in a quasi-permanent recession in

line with the recovery from the 2007-2009 recession. Second, as our explanation for the recession

relies on coordination failures, our theory suggests a role for government intervention. We study

various policies and find, in particular, that government spending, while generally detrimental to

coordination, may sometimes raise welfare by successfully preventing the economy from falling to

the low steady state.

The theory builds on the standard neoclassical growth model with monopolistic competition.

In this environment, firms are subject to a complementarity as they take into account the level of

aggregate demand when making individual production and pricing decisions. This complementarity

provides firms with a motive to coordinate their actions and is, as such, the first key ingredient

for coordination failures to arise. The second key ingredient is the presence of a form of increasing

returns. For its tractability and ease of use with a global game approach, we consider a discrete

technological choice: after incurring a fixed cost, firms can upgrade their technology and operate at

higher productivity. This assumption aims to capture various margins of adjustment for firms: the

adoption of a new technology, fixed investments, capacity utilization, entry/exit on some markets,

and many others. It is also a common modeling device in the Big Push and growth literature

(Murphy et al., 1989; De Ridder, 2024) and coordination literature (Cooper, 1994; Chamley, 1999).

Importantly for our mechanism, the discreteness of the decision guarantees a strong response of

production to changes in aggregate demand, which is key to sustain equilibrium multiplicity.

Together, the two main ingredients of the model — demand complementarities and increasing

returns — generate multiple rational expectation equilibria. In each period, the economy may

admit a high-output and a low-output equilibrium. In the high-output equilibrium, firms operate

with the high technology and aggregate employment and investment are high. On the opposite, in

the low-output equilibrium, firms adopt the low technology, employment and investment are low

and the economy is depressed.

Models with multiple equilibria raise a host of methodological issues when taken to the data

or when used for normative analysis. Solving those concerns usually requires to take a stand on

which equilibrium is played. A large part of the business cycle literature with multiple equilibria

(Azariadis, 1981; Diamond and Fudenberg, 1989; Benhabib and Farmer, 1994) deals with this issue

using sunspots. But underlying the use of sunspots is the implicit assumption that sunspot variables

are perfectly observed and that agents have an implausibly strong ability to communicate and agree

on which equilibrium to play. Policy analysis raises further concerns: since sunspots usually select

equilibria in an exogenous way, they tend to ignore the impact of policies on equilibrium selection

and are potentially subject to the Lucas critique. In this paper, we explore instead the view

proposed in the global game literature (Carlsson and Van Damme, 1993; Morris and Shin, 1998)

that equilibrium multiplicity in many coordination games is fragile and sensitive to the introduction

of incomplete information and strategic uncertainty. Following this approach, we endow firms with
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private signals about the state of the world, and show that a unique recursive equilibrium exists in

our economy when these signals are sufficiently informative or the fundamental sufficiently volatile.

This result complements the literature by showing that uniqueness is obtained not only in the static

one-shot game known to the global game literature, but also in a macroeconomic dynamic general

equilibrium model.

The global game refinement turns our model with multiple equilibria into one with a unique

equilibrium but multiple steady states in capital. Productivity and capital play indeed an important

role in determining how firms coordinate. An abundance of cheap capital or a high productivity

fuel the growth of firms and therefore facilitate coordination on high output. Inversely, if capital is

scarce and expensive or productivity is low, firms are more likely to coordinate on low output. As a

result, capital accumulation interacts with the coordination problem to generate rich dynamics. By

encouraging coordination on high output, an abundance of capital leads to an increase in income and

investment, thereby facilitating coordination on high output in the future. Capital accumulation

therefore makes coordination persistent. Furthermore, the dynamics of the capital stock typically

features two stable steady states. The high steady state exhibits high levels of output, aggregate

demand and firms using the high technology, while the low steady state features the opposite. After

a bad shock of sufficient size and duration, the economy runs the risk of falling into the low steady

state, a situation that can be described as a coordination trap. It then enters a chronic state of

depression as it sinks into a vicious cycle of declining capital stock and miscoordination. Only

large positive shocks to productivity or policy interventions can bring the economy back to the

high steady state. The theory therefore provides a foundation for long-lasting demand-deficient

downturns.

We calibrate the model to the United States economy and show that it performs similarly to

a real business cycle (RBC) model in terms of standard deviation of major aggregates and their

correlation with output. It, however, outperforms the RBC model in explaining business cycles

asymmetries as it generates a substantial amount of negative skewness as in the data. In addition,

the simulated ergodic distributions of various aggregates are bimodal, a feature that is also roughly

visible in the data. The multiplicity of steady states also generates strong non-linearities in how

the economy responds to shocks. We find that for small shocks the economy reacts essentially as

a standard RBC model: after a brief downturn, the economy grows back to its original state. For

a medium shock, however, firms may fail to coordinate on high output, leading to a decline in

investment that perpetuates the downturn, but the economy eventually recovers to its initial state.

Shocks are therefore amplified and propagated through the coordination mechanism even without

a change in steady state. For a large shock, the coordination problem becomes sufficiently severe

that the economy transitions to the low steady state, never returning to its original state.

To evaluate to what degree the theory can account for the events surrounding the Great Re-

cession, we calibrate a sequence of productivity shocks to replicate the observed TFP series over

2007-2009 and then let productivity recover. We find that these shocks are sufficiently large to

push the economy from the high to the low steady state. In addition, the time series generated by

4



the model broadly replicate the behavior of their empirical counterparts in the aftermath of the

recession with consumption, employment, observed TFP, investment and output stabilizing to a

lower steady state after a period of transition. Our coordination theory can therefore quantitatively

explain some of the unusual features of this recession.

Coordination failures are often used to motivate government intervention, including government

spending policies. In our model, the competitive equilibrium is inefficient because of monopolis-

tic distortions and the associated aggregate demand externality, and government intervention is

potentially useful. Our findings suggest that government spending, in the form of government

consumption, is detrimental to welfare in most of the state space, as the coordination problem

magnifies the dynamic welfare losses due to the crowding out of private investment. However, gov-

ernment spending may sometimes increase welfare. The intuition is as follows. When preferences

allow for a wealth effect on the labor supply, an increase in government spending puts downward

pressure on wages. As a result, the cost of production declines and firms can coordinate more easily

on high output. Through this channel, government spending helps coordination. To illustrate this

mechanism, we proceed to a series of numerical simulations and find that government spending

can increase welfare, with output multipliers as high as 3, when the economy is on the verge of

transitioning into the low steady state.

Even though government spending can be welfare improving, it is always suboptimal. We

thus consider the problem of a social planner in this economy and find that simple subsidies are

enough to implement the efficient allocation. First, an input subsidy corrects the inefficient firm

size that results from the monopoly distortions. Second, a profit subsidy makes firms internalize

the aggregate demand externality on their technology decision.

Related Literature

Our paper belongs to a long tradition in macroeconomics that views recessions as episodes

of coordination failures.2 A distinguishing feature of our work is the use of a global game ap-

proach to discipline the equilibrium selection. Our paper thus relates to the seminal articles of

Carlsson and Van Damme (1993) and Morris and Shin (1998). It further relates to the dynamic

global game literature as in Morris and Shin (1999) and Angeletos et al. (2007) and their appli-

cations such as Goldstein and Pauzner (2005) and others surveyed in Morris and Shin (2003). In

comparison to these papers, we consider a macroeconomic application to business cycles in general

equilibrium. Closer to our business cycle application, Chamley (1999) studies a stylized model of

regime switches with complementarities in payoffs, and obtains equilibrium uniqueness through an

imperfect information technique similar to a global game approach. Regime switches are infrequent

because of slow learning about the fundamental. In contrast, our paper studies regime switches in

an almost standard real business cycle model and obtains infrequent regime switches through the

2Among others: Azariadis (1981), Diamond (1982), Cooper and John (1988), Kiyotaki (1988),
Jones and Manuelli (1992), Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998) or more recently
Kaplan and Menzio (2016), Eeckhout and Lindenlaub (2019).

5



interaction of capital accumulation with coordination.

Related to the dynamic global game literature are the works of Burdzy et al. (2001) and

Frankel and Pauzner (2000) who resolve the equilibrium indeterminacy in dynamic coordination

games by introducing time-varying payoffs and a sufficient amount of frictions to prevent agents

to take action in every period. More closely related to our paper in this tradition is the work of

Guimaraes and Machado (2018) who examine the impact of investment subsidies in an extension

of the Frankel and Pauzner (2000) model to monopolistic competition and staggered technology

choice. In their model, firms receive exogenous opportunities to change their technology according

to a Calvo-type Poisson process. The persistence of regime changes in their model is governed by

the slow arrival of these opportunities. In contrast, we rely on a global game approach to discipline

equilibrium selection in a standard business cycle model with capital. The dynamics of regime

switches in our model is driven by the interaction of capital accumulation and coordination.

Another paper of ours, Fajgelbaum et al. (2017), proposes an explanation of the Great Recession

that relies on steady state multiplicity. In the theory, agents learn more when economic activity is

high. As a result, lower economic activity leads to higher uncertainty which lead to lower economic

activity. The paper shows that this feedback loop generates multiple steady states in a simple

model of investment. In contrast to these two papers, our propagation mechanism relies instead

on capital accumulation and the complementarities generated by non-convexities in the problem of

the firms.

Our approach is also reminiscent of the sentiment-driven business cycle literature as in the

recent contributions of Angeletos and La’O (2013) and Benhabib et al. (2015). In these papers,

in contrast to ours, the introduction of incomplete information leads to multiplicity of equilibria

by allowing for correlation between information sets. As a result, the economy is subject to non-

fundamental fluctuations. In our paper, we begin with a multiple equilibrium model and use a

global game refinement to suppress all non-fundamentalness in the equilibrium. Hence, changes

in fundamentals may trigger changes in coordination, but the economy is exempt from “animal

spirits” or sentiment-driven fluctuations.

Finally, our paper touches upon various themes familiar to the poverty trap literature in growth

theory. Murphy et al. (1989) propose a formal model of the Big Push idea that an economy can

escape a no-industrialization trap if various sectors are simultaneously industrialized. In terms of the

dynamics generated by the model, our paper is more closely related to Azariadis and Drazen (1990)

who introduce threshold externalities in the neoclassical growth model to allow for multiplicity of

locally stable steady states. Our paper relies on a demand-driven coordination problem to achieve

similar transition stages in the dynamics of the economy and studies their implications for business

cycles.

The paper is structured as follows. Section 2 introduces the environment and presents our

baseline model under complete information. Section 3 describes the incomplete information version

of the model and establishes our main uniqueness result. In section 4, we calibrate the model and

show that it replicates salient features of the recovery from the 2007-2009 recession. Section 5
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analyzes the policy implications of the model and describes our findings on government spending.

The full statements of propositions and the proofs can be found in the appendix.

2 Complete Information

In this section, we introduce the physical environment of our model, which remains the same

throughout the paper. We begin under the assumption of complete information as it allows us

to build intuition about the source of equilibrium multiplicity and the role of coordination in this

economy.

2.1 Environment

Time is discrete and goes on forever. A continuum of firms use capital and labor to produce

differentiated intermediate inputs. A competitive sector then combine those inputs into a final

good that is used for investment and for consumption by a representative household.

Households and preferences

The preferences of the representative household are given by

E

∞
∑

t=0

βtU (Ct, Lt) , (1)

where 0 < β < 1 is the discount factor, Ct > 0 is consumption of the final good and Lt > 0 is labor.

We adopt the period utility function of Greenwood et al. (1988) (GHH hereafter):3

U (Ct, Lt) =
1

1− γ

(

Ct −
L1+ν
t

1 + ν

)1−γ

, γ > 0, ν > 0.

The representative household takes prices as given. It supplies capital Kt and labor Lt in

perfectly competitive markets and owns the firms. It faces the sequence of budget constraints

Pt (Ct +Kt+1 − (1− δ)Kt) 6 WtLt +RtKt +Πt, (2)

where Pt is the price of the final good, Wt the wage rate, Rt the rental rate of capital and Πt the

profits it receives from firms. Capital depreciates at rate 0 < δ < 1.

Final good producers

The final good is produced by a perfectly competitive, representative firm that combines a

continuum of differentiated intermediate goods, indexed by j ∈ [0, 1], using the CES production

3GHH preferences allow us to derive analytical expressions for many equilibrium quantities, but are not essential
for our mechanism to operate. We relax this assumption in our policy exercises as the preference specification matters
for the effect of fiscal policy.

7



function

Yt =

(
∫ 1

0
Y

σ−1
σ

jt dj

)

σ
σ−1

, (3)

where σ > 1 is the elasticity of substitution between varieties, Yt is the total output of the final

good and Yjt denotes the input of intermediate good j. Profit maximization, taking the output

price Pt and input prices Pjt as given, yields the usual demand curve and the price of the final

good,

Yjt =

(

Pjt

Pt

)−σ

Yt and Pt =

(
∫ 1

0
P 1−σ
jt dj

)

1
1−σ

. (4)

Intermediate good producers

Intermediate good j is produced by a monopolist that uses a constant returns to scale production

function with capital Kjt and labor Ljt,

Yjt = Ajte
θtujtK

α
jtL

1−α
jt , (5)

where 0 < α < 1 is the capital intensity. The productivity term Ajte
θt depends on a firm-level

productivity level Ajt and an aggregate fundamental θt that follows an AR(1) process,

θt = ρθt−1 + ǫθt , (6)

where ǫθt ∼ iid N
(

0, γ−1
θ

)

.

We introduce increasing returns in the model in the form of a simple binary technological

choice.4 Firms can either operate a low technology, Ajt = Al, at no extra cost, or they can incur

an extra fixed cost f > 0 to operate a high technology, Ajt = Ah with Ah > Al. In what follows,

we use the notation ω = Ah/Al and assume that the fixed cost f is expressed in terms of the final

good.

This technological choice can capture many margins that firms use to adjust production. Among

others, it may capture the adoption of a technology, a fixed investment (equipment, R&D), discrete

margins of capacity utilization (plant opening/shutdown, number of shifts or production lines),

hierarchical changes, entry/exit in some markets, international trade, etc. We do not take a stance

at this point on its exact origin.Importantly, the discreteness of the decision breaks the convexity of

the firms’ cost function. As a result, firms are able to expand their production swiftly in response

to changes in aggregate conditions, which is crucial to sustain multiple equilibria in this economy.

Intermediate producers take the rental rate of capital Rt and the wage Wt as given. For each

4We restrict technology to take only two values for simplicity and sharpness of intuitions. Global game techniques
and the key steps of our uniqueness proof in the dynamic model can be extended to any finite number of levels.
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technological level Ai, i ∈ {h, l}, they solve the following static problem:

Πit = max
Yit,Pit,Kit,Lit

PitYit −RtKit −WtLit, (7)

subject to their demand curve (4) and production technology (5). Intermediate producer j then

picks the technology Ajt that maximizes its profits

Ajt = argmax
Ai∈{Ah,Al}

{Πht − Ptf,Πlt} .

2.2 Equilibrium Definition

We are now ready to define an equilibrium for this economy. Denote the complete history of

aggregate productivity shocks by θt = (θt, θt−1, . . .).

Definition 1. An equilibrium is a sequence of household policies
{

Ct

(

θt
)

,Kt+1

(

θt
)

, Lt

(

θt
)}∞

t=0
,

policies for firms
{

Yit

(

θt
)

,Kit

(

θt
)

, Lit

(

θt
)}∞

t=0
, i ∈ {h, l}, a measure mt

(

θt
)

∈ [0, 1] of firms

operating the high technology and prices
{

Pt

(

θt
)

, Rt

(

θt
)

,Wt

(

θt
)}∞

t=0
such that i) the household

maximizes utility (1) subject to (2); ii) intermediate producers solve their problem (7); iii) prices

clear all markets; and iv) the measure of firms mt

(

θt
)

satisfies

mt

(

θt
)

=



















1 if Πht − Ptf > Πlt,

∈ (0, 1) if Πht − Ptf = Πlt,

0 if Πht − Ptf < Πlt.

(8)

Our equilibrium concept is standard. Notice that the definition introduces the equilibrium

measure mt

(

θt
)

of firms with high technology, which must be consistent with individual technology

decisions (8).

2.3 Characterization

Two features of our environment simplify the characterization of the equilibria: i) under GHH

preferences, the amount of labor supplied by the household is independent of its consumption-

savings decision, ii) the problems of the final and intermediate good producers are static. We

can therefore characterize the equilibrium in two stages: we first solve for the static equilibrium

in every period, which determines the production and the technological choice, and we then turn

to the dynamic equilibrium, which uses the first stage as an input, to characterize the optimal

consumption-savings decision and the dynamics of the economy.

Partial equilibrium

We first characterize the decision of intermediate producers in partial equilibrium to highlight

the role of aggregate demand and factor prices in their technology choice. Substituting the demand
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curve (4) in the expression for profits (7), the first-order conditions for capital and labor yield

RtKit = α
σ − 1

σ
PitYit and WtLit = (1− α)

σ − 1

σ
PitYit. (9)

Total factor expenses is therefore equal to a fraction σ−1
σ of total sales, so that

Πit =
1

σ
PitYit =

1

σ

(

Pt

Pit

)σ−1

PtYt,

where we have substituted the demand curve (4). In this monopolistic setup, production decisions

are linked across firms as the total income generated by the private sector affects the level of demand

faced by each individual producers. As a result, profits depend on the firm’s relative price and on

aggregate demand Yt. In particular, when aggregate demand is high, firms have stronger incentives

to expand. This demand linkage is the main source of strategic complementarity in our model.

We can now simplify the technology decision to

Ait = argmax
Ai∈{Ah,Al}

{

1

σ

(

Pt

Pht

)σ−1

Yt − Ptf,
1

σ

(

Pt

Plt

)σ−1

Yt

}

, (10)

where the individual prices are optimally set at a constant markup over marginal cost, Pit =
σ

σ−1MCit and MCit =
1

Aieθt

(

Rt

α

)α
(

Wt

1−α

)1−α
for i ∈ {h, l}.5

Expression (10) highlights the key forces that determine the choice of technology in our environ-

ment. Firms with high technology enjoy lower marginal costs of production and therefore sell their

products at lower prices. Equation (10) tells us that, when choosing between the two technologi-

cal levels, firms compare two affine functions of aggregate demand — the one associated with the

high technology having a higher slope but a lower intercept than the one associated with the low

technology. As a result, firms pick the high technology when aggregate demand is high. Intuitively,

when demand is high, firms face high variable costs in capital and labor and have strong incentives

to pay the fixed amount f in order to exploit economies of scale and save on these costs. On the

other hand, firms have no reason to pay the fixed cost when demand is low and total variable costs

are relatively small.

General equilibrium

Under GHH preferences, we can derive analytical expressions for aggregate quantities as a

function of the measure mt of firms with high technology.

Proposition 1. For a given measure mt of firms with high technology the equilibrium output of

the final good is given by

Yt = A (θt,mt)K
α
t L

1−α
t , (11)

5See Appendix D.1 for the full derivation.
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where A (θt,mt) =
(

mtAh exp (θt)
σ−1 + (1−mt)Al exp (θt)

σ−1
)

1
σ−1

and aggregate labor is

Lt =

[

(1− α)
σ − 1

σ
A (θt,mt)K

α
t

]
1

α+ν

. (12)

The corresponding production and profit levels of intermediate firms are, for i ∈ {h, l},

Yit =

(

Ai exp (θt)

A (θt,mt)

)σ

Yt and Πit =
1

σ

(

Ai exp (θt)

A (θt,mt)

)σ−1

PtYt. (13)

Proposition 1 establishes a number of important results. We see from equation (11) that the

economy aggregates into a Cobb-Douglas production function with TFP A (θt,mt). Importantly,

this aggregate TFP is an endogenous object that corresponds to an average of intermediate firms’

effective productivities. As a result, aggregate output increases with the measure of firms mt, as

high technology firms operate a more productive technology.

The complementarity between aggregate demand and technological choices is at the core of our

framework: higher aggregate demand encourages firms to choose the high technology; more firms

choosing the high technology, in turn, results in higher output and aggregate demand. Multiple

equilibria arise in our environment when this two-way feedback between demand and production

is sufficiently strong. The picture remains incomplete, however, if one ignores the role of general

equilibrium effects behind technological choices. Firms’ relative prices depend on factor prices,

which are affected by the measure of high technology firms mt in equilibrium, since firms compete

on factor markets. Whether there is strategic complementarity in technology decisions between

firms in our setup ultimately depends on which of these two forces dominates: complementarity

through aggregate demand linkages or substitutability through competition on factor markets.

Equilibrium multiplicity

Using our analytical results on equilibrium production and profits, we now characterize the

static equilibrium technology decision for some given stock of capital Kt and productivity θt.

Proposition 2. Consider the following condition on parameters:

1 + ν

α+ ν
> σ − 1. (14)

Under condition (14), there exist thresholds BH < BL such that:

i) if AeθtKα
t < BH , the static equilibrium is unique and all firms choose the low technology, mt = 0;

ii) if AeθtKα
t > BL, the static equilibrium is unique and all firms choose the high technology, mt = 1;

iii) if BH 6 AeθtKα
t 6 BL, there are three static equilibria: two in pure strategies, mt = 1 and

mt = 0, and one in mixed strategies, mt ∈ (0, 1).

If condition (14) is not satisfied, the static equilibrium is always unique.
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Multiple equilibria arise under condition (14).6 In regions of the state space where capital is

abundant and productivity θt is high, such that AeθtKα
t > BH , a high equilibrium exists in which

all firms choose the high technology, mt = 1. In these regions, renting capital is inexpensive and

technology is productive, so firms operate at a large scale. As a result, total output and aggregate

demand are high, which further encourages firms to expand and adopt the high technology. On

the opposite, in regions of the state space where capital is scarce and productivity low, such that

AeθtKα
t 6 BL, a low equilibrium exists with mt = 0: firms operate at a small scale and do not

find it worthwhile to pay the fixed cost f to expand their production. For the intermediate region

BH 6 AeθtKα
t 6 BL, the two equilibria coexist in addition to a third mixed equilibrium. The

economy is then subject to self-fulfilling prophecies: depending on firms’ expectations, it may

end up in either the high or the low equilibrium. Figure 2 depicts the situation described in the

proposition.

The condition for multiplicity (14) captures the conflict between the strategic substitutability

from competition in the factor markets, on the left-hand side, and the demand-side complemen-

tarity, captured by σ. This condition is satisfied when the intermediate good varieties are strong

complements, if σ is low, or when the left-hand side is large. The latter term, 1+ν
α+ν , is the elasticity

of aggregate production with respect to changes in TFP and it captures the scalability of the econ-

omy to changes in average productivity. Multiple equilibria are thus more likely to arise when the

scalability is high, which happens when the labor supply is elastic (ν small) and when production

is intensive in the flexible factor, labor (α small). This scalability term captures, in particular, the

idea that multiple equilibria can only be sustained if factor prices react moderately to changes in

mt. We assume that condition (14) is satisfied from now on.

Efficiency

At this stage, it is natural to wonder whether a planner should intervene to improve the outcome

of the coordination game. We consider the following planning problem

max
Kt+1,Lt,mt

E

∞
∑

t=0

βtU

(

(

mtY
σ−1
σ

ht + (1−mt)Y
σ−1
σ

lt

)
σ

σ−1

+ (1− δ)Kt −mtf −Kt+1, Lt

)

,

subject to the production function (5) and the resource constraint. Proposition (3) describes the

efficient allocation.

Proposition 3. If 1+ν
ν+α > σ − 1, there exists a threshold BSP , with BSP 6 BL, such that the

planner makes all firms use the high technology, mt = 1, if AeθtKα
t > BSP or the low technology,

mt = 0, if AeθtKα
t 6 BSP . The threshold BSP is lower than BH for σ small.

Underlying this result, is an equivalence between the condition for equilibrium multiplicity, given

6The multiplicity condition can be weakened by allowing for decreasing returns. For aggregate returns to scale
0 < η < σ

σ−1
, the condition for multiplicity becomes 1

η
1+ν
α+ν

> σ − 1.
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Figure 2: Multiplicity in the static game as a function of the state space

by (14), and the convexity of the planner’s problem inmt. When (14) is satisfied, the planner always

chooses a corner solution, either mt = 0 or 1. Since coordinating on the high technology is costly,

the planning solution is non-trivial and there exists a threshold BSP such that all firms adopt the

high technology if and only if AeθtKα
t > BSP . When the productivity level and the capital stock

are low, using the high technology is too expensive and it is efficient to coordinate firms on the low

equilibrium.

Because of the demand externality, the efficient allocation differs in important ways from the

competitive outcome. Figure 3 shows the social planner’s (SP) threshold, BSP , together with the

thresholds of the competitive economy (CE), BL and BH . Proposition 3 shows that BSP always

lies below BL which indicates that the planner is more prone to pick the high technology. This

result is a direct consequence of the demand externality: firms do not internalize that by choosing

the high technology, they would generate more income to be spent on other firms’ products, while

the planner does. The competitive equilibrium therefore suffers from coordination failures: in the

area surrounded by the dashed curves, between BL and BSP , the planner always picks the high

technology while firms in the competitive economy may coordinate differently.

Figure 3 depicts a situation in which BSP lies below BH , which happens when the degree of

complementarity is strong (σ low). When σ is large, the planner’s threshold BSP lies between BH

and BL and, in part of the state space, the planner may sometimes prefer the low technology when

the competitive economy coordinates on the high equilibrium.
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3 Incomplete Information

The forces that lead to multiplicity in the model with complete information may have interest-

ing dynamic implications, but the presence of multiple equilibria raises important methodological

issues for policy and quantitative analysis. This multiplicity is, however, fragile and hinges on the

assumption of common knowledge. In this section, we adopt a global game approach. By intro-

ducing incomplete information in the model, we show that uniqueness of the full dynamic general

equilibrium obtains for a small departure from common knowledge.

3.1 Environment

To cast the model into a global game framework, we slightly modify the timing of events and the

information available to firms when they choose their level of technology utilization. The physical

structure of the environment remains the same as in the previous section.

Information and timing

Each period t is now split into two stages: i) intermediate producers first choose their technology

under incomplete information about current productivity θt, ii) the true state of θt is then revealed,

production decisions take place and all markets clear.

In the first stage, all agents know the past realizations of θ, which are included in their informa-

tion set It = (θt−1, θt−2, . . .). At the beginning of the period, nature draws the new productivity

level θt from the stochastic process (6) but it remains unobserved by agents. The ex-ante beliefs

14



of agents about current productivity are therefore θt | It ∼ N
(

ρθt−1, γ
−1
θ

)

. In contrast to the

model with complete information in which agents observed the fundamental θt perfectly, we as-

sume that each intermediate producer j only receives a noisy signal vjt = θt + εvjt, where the noise

εvjt ∼ N
(

0, γ−1
v

)

is iid across agents and time. After observing their private signal, firms use Bayes’

rule to update their beliefs to

θt|It, vjt ∼ N
(

γθρθt−1 + γvvjt
γθ + γv

,
1

γθ + γv

)

. (15)

Intermediate producers then use these individual beliefs to make their technology decisions in the

first stage of the period.

In the second stage, consumption-savings decisions are made, production takes place and all

markets clear. The observation of production and aggregate prices reveals the aggregate produc-

tivity θt, which becomes common knowledge. Since the input choices and production take place

simultaneously, these decisions are made under complete information. As a result, the equilibrium

expressions derived in Proposition 1 are still valid, with the exception that mt is now the solution

to the coordination game under incomplete information that we describe below. After observing

the true value of θt, the private signals are no longer useful and are discarded. Firms therefore

share the same information at the beginning of every period.

Technology decision

Under the new information structure, the surplus from using the high instead of the low tech-

nology is the difference between the expected profits from using both technologies:

∆Π (Kt, θt−1,mt, vjt) ≡ Eθ [Uc (Ct, Lt) (Πh (Kt, θt,mt)− f −Πl (Kt, θt,mt)) | θt−1, vjt] . (16)

An agent with private signal vj chooses the high technology if and only if ∆Π (Kt, θt−1,mt, vjt) > 0.

Three important features of expression (16) are worth emphasizing. First, in contrast to the

complete information case, agents compute the expectation of profits under their own individual

beliefs, given by (15). Second, in addition to the uncertainty about the fundamental θt, there

is strategic uncertainty in this environment: since other agents base their decisions on their own

noisy private signals, the measure of firms using the high technology is itself uncertain and mt is

a random variable. Third, because of the uncertainty within the period, between stage 1 and 2,

intermediate producers take into account the fact that the household does not value consumption

equally in all states of the world. As a result, firms use the representative household’s stochastic

discount factor Uc (C,L) to evaluate profits.

Equilibrium definition

Because the global game selects equilibria as a function of (Kt, θt−1), the economy has a Marko-

vian structure. We thus define a recursive equilibrium for this economy. We use θ−1 to denote the
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productivity of the previous period and normalize the price index to Pt = 1 in each period.

Definition 2. A recursive equilibrium consists of i) a value function for the household V (k;K, θ,m)

and decision rules {c (k;K, θ,m) , l (k;K, θ,m) , k′ (k;K, θ,m)}; ii) decision rules for individual in-

termediate producers {Yi (K, θ,m) ,Ki (K, θ,m) , Li (K, θ,m) ,Πi (K, θ,m)} for i ∈ {h, l}; iii) ag-

gregates {Y (K, θ,m) , L (K, θ,m) ,Π(K, θ,m)}; iv) price schedules {R (K, θ,m) ,W (K, θ,m)}; v)
a law of motion for aggregate capital H (K, θ,m); and vi) a measure m (K, θ−1, θ) of firms with

high technology such that:

1. The household solves the problem

V (k;K, θ,m) = max
c,l,k′

U (c, l) + βE
[

V
(

k′;H (K, θ,m) , θ′,m′) |θ
]

subject to c+ k′ − (1− δ) k 6 R (K, θ,m) k +W (K, θ,m) l +Π(K, θ,m);

2. Intermediate producers of type i ∈ {h, l} solve the problem

Πi (K, θ,m) = max
Pi,Yi,Ki,Li

PiYi −R (K, θ,m)Ki −W (K, θ,m)Li,

subject to Yi = P−σ
i Y (K, θ,m) and Yi = Ai (θ)K

α
i L

1−α
i ;

3. Aggregate output and profits are given by

Y (K, θ,m) =
(

mYh (K, θ,m)
σ−1
σ + (1−m)Yl (K, θ,m)

σ−1
σ

)
σ

σ−1
,

Π(K, θ,m) = m (Πh (K, θ,m)− f) + (1−m)Πl (K, θ,m) ;

4. Capital and labor markets clear

K = mKh (K, θ,m) + (1−m)Kl (K, θ,m) ,

l (K;K, θ,m) = mLh (K, θ,m) + (1−m)Ll (K, θ,m) ;

5. Consistency of individual and aggregate capital decisions: H (K, θ,m) = k′ (K;K, θ,m) ;

6. The aggregate resource constraint is satisfied

c (K;K, θ,m) +H (K, θ,m) = Y (K, θ,m) + (1− δ)K −mf ;

7. For all K, θ−1 and θ, the measure of firms with high technology m (K, θ−1, θ) solves the fixed

point problem

m (K, θ−1, θ) =

∫

1I [∆Π (K, θ,m, vj) > 0]
√
γvφ (

√
γv (vj − θ)) dvj , (17)

where φ is the probability density function of a standard normal and ∆Π is defined by (16).
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Our definition of a recursive equilibrium is standard except for condition (17) which corresponds

to the equilibrium of the global game played by the firms: the measure m is the aggregation

of the technology decisions when individual firms have the correct beliefs about its equilibrium

distribution.

3.2 Existence and Uniqueness

When choosing their level of technology, firms play a global game as in Carlsson and Van Damme

(1993) and Morris and Shin (1998). A key insight from this literature is that the existence of multi-

ple equilibria depends on the information structure. In particular, full knowledge about the strategy

of the other players allows agents to coordinate in a way that leads to multiplicity. The introduc-

tion of a small amount of strategic uncertainty, however, can eliminate this multiplicity. We extend

these results to our dynamic general equilibrium environment.7

Another contribution of this paper is to show how uniqueness of the static technology deci-

sion game extends to the rest of the dynamic environment. This result is not a straightforward

application of global game techniques for several reasons. First, there is a complex two-way feed-

back between the game and the dynamic consumption-savings choice. Second, firms’ technology

decisions aggregate into a non-concave production function with endogenous TFP, opening the pos-

sibility of multiple solutions to the consumption-saving problem. Third, our economy is subject to

distortions due to monopolistic competition. All these factors require specific techniques to prove

the uniqueness of the equilibrium.

We now state our main result.

Proposition 4. For γv large and ω sufficiently close to 1, such that, in particular,

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
, (18)

and additional assumptions stated in the Appendix, there exists a unique dynamic equilibrium. The

equilibrium technology decision takes the form of a continuous cutoff v̂ (K, θ−1) such that firm j

adopts the high technology if and only if vj > v̂ (K, θ−1). Furthermore, the cutoff is a decreasing

function of its arguments.

The proof of proposition 4 is structured according to the natural separation that arises in our

model between the static technology decision stage and the dynamic consumption-savings stage.

In the first part of the proof, we focus on the global game, taking some stochastic discount factor

as given, and provide sufficient conditions for the uniqueness of the static equilibrium of the game.

However, uniqueness of the static coordination game is not sufficient to guarantee uniqueness of a

dynamic equilibrium because of complementarities across periods. In the second part of the proof,

7Applications of global games to market economies are sometimes problematic as prices may reveal enough
information to restore common knowledge and multiplicity (Atkeson, 2000). In our setup, prices do reveal the true
value of the fundamental, but since they are only determined at the production stage, after the technology decisions
are taken, we retain the uniqueness result.
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we show that the economy under the endogenous TFP that arises from the global game admits a

unique dynamic equilibrium.

Part 1 proceeds in two steps. First, we show that when private signals are sufficiently precise, i.e.,

γv large, consumption risk vanishes and we can ignore the stochastic discount factor in expression

(16). This step is particularly useful as it allows us to approximate arbitrarily well the solution to

the global game by solving a simplified game independently from the consumption-savings decision

of the household.

As is common in the global game literature, this game is solved by iterated deletion of domi-

nated strategies as in Morris and Shin (1998). Strategic uncertainty is essential for this procedure.

In particular, higher strategic uncertainty leads to more substantial deletion of strategies at each

iteration, which promotes uniqueness. Condition (18) is sufficient to guarantee that the deletion

process converges to a unique equilibrium, which takes the form of a cutoff strategy. It states in

particular that the fundamental θ must be sufficiently uncertain (γθ small) and, perhaps surpris-

ingly, that private signals must be sufficiently precise (γv large). This last condition is required to

generate enough strategic uncertainty: since firms put more weight on their heterogeneous signals

when they are precise, γv must be sufficiently large to generate enough dispersion in beliefs and,

therefore, in strategies.

Part 2 of the proof deals with the consumption-savings problem of the household. Once the tech-

nology decisions have been made, the model reduces to a neoclassical growth model with monopoly

distortions and endogenous TFP. Because of these two features, specific techniques are required

to show existence and uniqueness of the equilibrium. We build on the work of Coleman and John

(2000) and Datta et al. (2002), who use a version of Tarski’s fixed-point theorem on lattices, which

states that monotone operators on lattices have a non-empty set of fixed points. Our proof extends

this earlier work to environments with monopoly distortions and endogenous TFP.

The main challenge in the second part of the proof arises from the possibility of multiple

solutions to the Euler equation because of the endogenous response of TFP A (θ,m). We show

that multiplicity does not happen as long as θ is sufficiently volatile (i.e., γθ is low, so that the

transition between technologies is smooth in expectation) and ω is not too large (i.e., TFP cannot

jump too fast). Under those conditions, the Euler equation is a monotone pseudo-concave operator

that admits a unique positive fixed point.

According to Proposition 4, the optimal technology decision takes the form of a cutoff v̂ (K, θ−1)

such that only firms with private signals vj > v̂ (K, θ−1) adopt the high technology. Hence, the

measure of firms operating the high technology is m (K, θ−1, θ) = 1 − Φ
(√

γv (v̂ − θ)
)

. Since the

cutoff is decreasing in K, the equilibrium measure of firms with high technology increases with K.

Figure 4 compares the equilibrium aggregate output Y (K, θ,m) under incomplete information

to the three possible equilibria of the complete information model (m = 1, m = 0 and the mixed

equilibrium). As the figure illustrates, the global game selects the low equilibrium when the stock

of capital is small and the high equilibrium when it is large with a gradual transition in the shaded

region where multiplicity prevails under complete information. This gradual transition is due to
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Figure 4: Aggregate output as a function of K for some given (θ−1, θ)

the progressive adoption of high technology by firms with dispersed beliefs. While the outcomes are

similar in the non-multiplicity regions, the equilibrium selected by the global game in the shaded

region differs quite substantially from its complete information counterparts. In particular, the

global game leads to a technological level that increases in the economy’s fundamentals, in contrast

to the mixed strategy equilibrium.8

3.3 Dynamics

We now explore the dynamic properties of the economy under incomplete information. As was

mentioned before, the model aggregates into a neoclassical growth model with an endogenous TFP

that breaks the convexity of the production set. Because of this non-convexity, aggregate output

Y is an S -shaped function of capital K, as shown in Figure 4. Intuitively, when capital is scarce

firms prefer to operate at a low scale and, therefore, to produce with the low technology. As capital

becomes more abundant, the lower rental rate increases the incentives to use the high technology,

which are further magnified by the adoption of the high technology by other firms through the

demand externality. The steep part of the S -shaped curve corresponds to the transition between

the two technologies.

Aggregate quantities such as consumption, employment and, importantly for the dynamics,

investment inherit this S -shaped relationship to capital. Figure 5 displays the laws of motion

8In the mixed-strategy equilibrium firms must be indifferent between using the high and the low technology.
When the capital stock is low, a large fraction of firms must use the high technology for indifference to hold. Output
is consequently decreasing in capital in this equilibrium.
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of capital for various values of productivity θ. As the figure illustrates, for a high θ, the law of

motion of K intersects the 45◦-line once at a high capital level to the right of the transition region.

Similarly, when productivity is low, the only intersection occurs at a low level of capital to the left

of the transition region. However, for intermediate values of productivity, the law of motion can

feature three intersections: a high and a low stationary point, both stable, and an unstable one in

the middle region. We denote by Kh (θ) the set of stationary points at the right of the transition

region, where most firms operate the high technology and production is high, and refer to their

basin of attraction as the high regime. Similarly, K l (θ) designates the set of stationary points at

the left of the transition region, where firms mostly produce the low technology and production is

low, and refer to their basin of attraction as the low regime. As we will see, this multiplicity of

stationary points generates non-linear dynamics.

The phase diagram in Figure 6 summarizes the dynamics of the economy over the whole state

space.9 The two black lines represent the high and low stationary points in the dynamics of capital:

Kh (θ) and K l (θ). The basin of attraction of the high stationary points in the upper right region

— the high regime — is indicated by the white area, while that corresponding to the low stationary

points in the lower left region — the low regime — is represented by the shaded area. Notice that

the low regime does not exist for high values of θ while the high regime disappears for low values

of θ.

In the absence of productivity shocks, the economy converges towards the steady state which

corresponds to the basin of attraction it belongs to. Exogenous shocks to productivity θ can

however push the economy from one regime to the other. When this happens, the economy starts

converging towards its new steady state and the measured TFP adjusts accordingly.

Consider, for instance, an economy that starts at point O in Figure 6. Without shocks to θ, this

economy would simply reach the high-regime stationary locus at Kh (0) and remain there. Small

temporary shocks to θ can move the economy up or down on the diagram but, as long as it does not

leave the high regime, the system eventually converges back to the same stationary point. A large

negative shock to θ, such as the one illustrated by the dashed line from point O to O′, could however

move the economy to the low regime. When this happens, the low productivity level pushes firms

to adopt the low technology, leading to a low level of output. As a result, the household invests less

and the capital stock declines. Coordination on the high technology is further impeded as capital

falls: firms continue to operate the low technology, perpetuating the decline in capital. As capital

declines and productivity recovers, the economy follows the curved arrow in Figure 6 from point

O′ to the low regime stationary locus Kl (0) where it remains trapped, even after productivity has

returned to normal. As we can see, the response of the economy as a function of the size of the

shock is highly non-linear.

While we focus on productivity shocks for simplicity, the mechanism that we propose is by no

means restricted to these shocks, but can accommodate and provide propagation to other types of

9The full state space is (K, θ−1, θ). For simplicity, we however omit θ−1 in our phase diagram as it becomes
irrelevant in the case of interest when γv is large.
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shocks considered in the literature, such as financial shocks. Consider, for instance, capital quality

shocks, as in Gertler and Karadi (2011) and Gourio (2012). From Figure 6, we see that such a

shock could move an economy from point O to the basin of attraction of the low regime, leading

to a permanently depressed economy. In contract, in an RBC model, the high marginal product

of capital that would result from this shock would lead to an increase in investment and bring the

economy back to its unique steady-state. The type of coordination problem that we analyze should

be considered as a general propagation mechanism, which could interact in interesting ways with

other types of shocks and frictions.

4 Calibration

To evaluate the quantitative importance of coordination for business cycle fluctuations we cal-

ibrate the model to the United States economy. After analyzing the model’s predictions along

various business cycle moments, we run a counterfactual experiment in which we study whether

the model can account for the behavior of the economy after the 2007-2009 recession.

4.1 Parametrization

Because of changes in trend growth rate before 1985, we target moments from the 1985-2015

period.10 Our calibration strategy relies on the interpretation that the US economy was in the

high regime over the period 1985Q1-2007Q3 and fell to the low regime after the 2007Q4-2009Q2

recession.11 Our final quantitative exercise will provide support for this interpretation.

We calibrate the model at a quarterly frequency. The capital share α, the discount rate β and

the depreciation rate δ are set to standard values. For the preferences of the household, we use

log utility, so that γ = 1, and follow Jaimovich and Rebelo (2009) in setting ν = 0.4, implying a

Frisch elasticity of 2.5 in line with macro-level estimates. The fundamental productivity process

θ is parametrized to replicate a persistence and a long-run standard deviation of log output of of

0.995 and 6%, as observed over 1985-2015. We are left to calibrate four parameters: σ, γv, ω and

f .

To discipline the technological choice, we use micro data from Compustat. We estimate firm-

level TFP and markups following De Loecker et al. (2020).12 To calibrate the elasticity of substitu-

tion σ, we target the average sales-weighted markup in our sample of 52% over the period 1985-2015.

This gives us a value of σ = 2.92. This parameter value implies strong demand complementarities

and puts our model in the region in which multiple steady states exist in the incomplete informa-

tion environment. Such an elasticity is not uncommon in plant-level studies. Hsieh and Klenow

(2014) uses the same value to study the life cycle of plants in India and Mexico. An elasticity

of 3 also corresponds to the median estimates of Broda and Weinstein (2006) at various levels of

10Figure 13 in the Appendix shows how the trend varies over different periods for GDP and TFP. Data sources
are detailed in Appendix B.

11Following this interpretation, we detrend the log time series using a linear trend computed over 1985Q1-2007Q3.
12See Appendix B for details.
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aggregation. Using trade data, Bernard et al. (2003) estimate a value of σ = 3.79 in a model of

plant-level export behavior.

To calibrate the productivity gain ω from using the high technology, we run the following

regression for firm i in sector j at date t:

log (TFPijt) = βj + 0.00237∗∗∗
(1.09e−4)

t− 0.0167
(1.85e−3)

∗∗∗1 {t > 2007} + εijt,

where βj is a 4-digit NAICS sectorial fixed effect and where we allow for a linear time trend and a

dummy for the post-2007 period. This regression suggests that firm-level TFP in the economy fell

by an average of 1.67% in the aftermath of the recession. With the interpretation that the economy

was in the high steady state until 2007 (mt ≃ 1) and fell to the low steady state afterwards, we set

ω = 1.017.

In our model, the fixed cost f governs the frequency at which regime transitions occur. In

particular, under our interpretation that the US economy stays mostly in the high regime, f

determines the probability that the economy can fall in the low regime, which corresponds to a

large, persistent fall in GDP. With only thirty years of data, time series averages are only mildly

informative about the frequency of these transitions. We propose instead to rely on probabilistic

forecasts. More precisely, the SPF provides mean probability forecasts of GDP growth over various

bins. According to the survey, the probability that real GDP growth falls below -2%, its lowest

category, is on average 0.63%.13 Adjusting for an average trend growth rate of 2.9% in the SPF

data, we pick f so that the average probability that output growth in our model will be lower than

-4.9% over the next year is consistent with the survey. The calibrated value of f is such that if

all firms were to produce with the high technology the fixed costs would amount to about 1.1% of

average output. To verify that this number is not implausible, we compare it to the item “Selling,

General and Administration” (XSGA) in Compustat, an often used proxy for overhead production

costs in the data. We run the firm-level regression

fcijt = γj − 0.0125
(6.46e−4)

∗∗∗1 {t > 2007} + eijt,

where γj is a 4-digit sectorial fixed effect and fcijt = XSGAijt/SALEijt is the share of fixed costs

over total sales. Our estimate supports the view that the share of fixed costs in production declined

by about 1.25 percentage points, a number broadly in line with our calibration.

Finally, to calibrate the precision of the private signals γv, which governs the dispersion of

beliefs, we rely on forecasting data from the Survey of Professional Forecasters (SPF). We target

the interquartile range of forecasts about current quarter log GDP which averages to 0.24% over

1985-2015.14

13We use the mean probability forecast about next year real GDP growth from the SPF. Because the SPF variable
definitions change over time, we restrict our sample to 1992Q1-2009Q1, which corresponds to the largest available
sample with a consistent definition included in our period of interest.

14In either the high or the low regime, m is nearly constant close to 1 or 0. Since regime transitions are rare
in the US experience, the contribution of m to average output volatility is thus negligible. Using the expression
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The parameters are jointly estimated by a method of simulated moments that minimizes the

distance between the empirical and simulated moments, computed over long-run simulations. Table

1 lists the parameters. As it turns out, our resulting parameters are such that condition (18), which

guarantees the uniqueness of the global game equilibrium, is satisfied.

Table 1: Parameters

Parameter Value Source/Target

Time period one quarter
Total factor productivity A = 1 Normalization

Capital share α = 0.3 Labor share 0.7

Discount factor β = 0.951/4 0.95 annual

Depreciation rate δ = 1− 0.91/4 10% annual
Risk aversion γ = 1 log utility

Elasticity of labor supply ν = 0.4 Jaimovich and Rebelo (2009)
Persistence θ process ρθ = 0.94 Autocorrelation of log output

Long-run standard deviation of θ σθ = 0.009 Standard deviation of log output
Elasticity of substitution σ = 2.92 Average markup
Precision of private signal γv = 1, 154, 750 See text

TFP gain from high technology ω = 1.017 See text
Fixed cost f = 0.019 See text

4.2 Quantitative Evaluation

The calibrated parameters are such that, because of the coordination problem, the economy

has two stable steady-states for intermediate values of θ, but only one steady-state for high or low

values of θ.15

Ergodic distributions

To illustrate the unusual dynamic properties that result from the steady-state multiplicity, we

simulate the model for one million periods and plot the ergodic distributions of measured TFP,

output, investment, consumption, employment and the productivity process θ in logs on Figure 7.

While productivity θ is normally distributed, the other aggregates are negatively skewed and have

bimodal ergodic distributions, a sign that the economy spends a substantial amount of time in the

low regime. For consistence with our detrending method, each simulated distribution is centered

Yt =
(

(1− α) σ−1
σ

)
1−α
α+ν

(

AeθtΩ(mt)K
α
t

)

1+ν
α+ν with Ω (m) =

(

m
(

ωσ−1 − 1
)

+ 1
) 1

σ−1 , and ignoring the contribution of

m, the variance of beliefs about current log output is Var (log (Yt) |θt−1, vt) =
(

1+ν
α+ν

)2
1

γθ+γv
yielding an interquartile

range of IQR = 2Φ−1 (0.75)

√

(

1+ν
α+ν

)2
1

γθ+γv
, where Φ is the CDF of a standard normal. Using the parameters of

the calibration together with the SPF data over the period 1985-2015 yields the value of γv.
15Figure 15 in the Appendix shows the dynamics of K for various values of θ.
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around the upper mode corresponding to the high regime. For comparison with the data, Figure 8

reproduces the empirical distributions of these variables in log deviation from trend. As the data

shows, bimodality is roughly observed for most variables, and our model offers a reasonable fit to

the empirical distributions, except for investment which appears more dispersed in the data.
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Figure 7: Model: ergodic distributions of simulated data
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Figure 8: Data: distributions of aggregates

Business cycles moments

To further evaluate the fit of the model, we compute various business cycle moments from

simulated time series and compare them to their empirical counterparts. The results are shown

in Table 2 together with moments generated from a standard real business cycle model.16 The

differences between the full model and the RBC model highlight the influence of the coordination

16Without our coordination mechanism to provide amplification and propagation, the aggregate productivity
process in the RBC model must be recalibrated in order to fit the autocorrelation and standard deviation of log output.
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mechanism on the dynamics of the economy. In terms of standard deviations, and correlations with

output, both models perform similarly. Our full model, however, clearly outperforms the RBC

model in terms of skewness. This result stems from the presence of the two steady states, which

imply that the economy spends a substantial amount of time in the depressed state.17

Table 2: Dynamic properties of the data, the full model and the RBC model.

Output Investment Hours Consumption

Correlation with output
Data 1.00 0.90 0.91 0.98
Full model 1.00 0.90 1.00 0.99
RBC model 1.00 0.95 1.00 0.99

Standard deviation relative to output
Data 1.00 3.09 1.03 0.94
Full model 1.00 1.44 0.71 0.88
RBC model 1.00 1.30 0.71 0.95

Skewness
Data −1.24 −0.92 −0.62 −1.31
Full model −0.46 −0.36 −0.45 −0.41
RBC model −0.00 −0.03 −0.00 −0.00

Impulse response functions

To illustrate the non-linear properties of the model, we now look at the response of various

aggregates to productivity shocks. Starting in the high steady state, we hit the economy with three

sequences of θ shocks of different sizes and durations, represented in panel (a) of Figure 9. These

specific shocks were chosen to illustrate the types of dynamics that the model can generate.

After the small shock (solid blue line), firms reduce their scale of operation only slightly. They

keep coordinating on the high technology throughout the duration of the shock and, as a result,

the economy recovers fairly quickly to the high steady state once the shock has disappeared. The

response of the economy is essentially the same as what we would observe in a standard RBC model.

The situation is different when the economy is hit by the shock of intermediate size, represented

by the dashed lines in Figure 9. In this case, firms reduce their production more drastically by

adopting the low technology and cutting down on inputs, partly because of lower productivity and

partly because of lower aggregate demand. Because of this failure of firms to coordinate on high

production, the economy takes substantially more time to recover to the high regime. Finally,

The long-run standard deviation of θ is recalibrated to σθ = 1.6% and its persistence to ρθ = 0.97. Preferences and
technology parameters are otherwise the same as in our benchmark calibration.

17The negative skewness of these variables is a property of the data robust to changes in the time range. For
instance, the skewness of log output over 1967-2015 is -0.47.
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after the large shock, the measure of firms operating the high technology drops massively and stays

low for a long time. With less resources, the household saves less and the capital stock declines,

making coordination on the high technology even more difficult. The economy converges to the

low steady state and remains trapped there even after productivity θ has fully recovered. Once in

the low regime, only a sufficiently large positive shock can move the economy back into the basin

of attraction of the high steady state.18
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Notes: For the small shock (solid blue line), the innovations in θ are set to -2 standard deviations for 2 quarters. For
the medium shock (dashed red line), the innovations are set to -2 standard deviations for 3 quarters. For the large
shock (green dotted line), the innovations are set to -3 standard deviations for 3 quarters.

Figure 9: Impulse response functions

18Figure 16 in the Appendix plots the response of the return on capital R−δ and the wage W to these shocks. Both
of them drop on impact. When the economy settles in the low steady state, wages remain depressed, while the return
on capital recovers to its initial long-run value. Note that R corresponds to the real rental rate of productive capital
and is therefore the return on a risky asset. The behavior of R in our model is consistent with the the detrended
yield on AAA and BAA Corporate Bonds corrected for inflation expectations, which had recovered by 2014.
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The aftermath of the 2007-2009 recession

We now turn our attention to the Great Recession. Panel (a) of Figure 10 shows the behavior

of output, employment, investment, consumption and TFP19 from 2005 to 2015. All series are

normalized to 0 at the beginning of the recession in 2007Q4. After the initial hit, consumption,

output and employment slowly declined and stabilized at about 10% below their pre-recession

levels. Similarly, investment initially dropped by about 45% before recovering to 25% below its

pre-recession level.

To evaluate whether our model can replicate the US experience during this recession, we reverse-

engineer a series of productivity shocks θ so that the endogenous TFP in our model matches the

measured TFP series between the NBER recession dates of 2007Q4 and 2009Q2. The economy

starts from the high steady state corresponding to θ = 0. We set the innovations to productivity to

zero after 2009Q3 and let the economy recover afterwards. As it turns out, such a series of shocks

is enough to trigger a shift to the low regime.20 The response of various aggregates is shown in

panel (b) of Figure 10. As we can see, our model offers a reasonable description for the evolution

of consumption, employment and output. Notice also that our model provides an endogenous

explanation for the protracted decline in measured TFP. The reaction of investment, on the other

hand, is more muted in our model compared to the data as it falls by 32% on impact and then

stabilizes at about 15% below its initial trend.21 In the simulation, the initial drop in endogenous

TFP is due to the direct impact of the productivity shock together with the transition from the high

to the low technology by firms. Its long-run behavior, however, is solely driven by the endogenous

technology choice, as exogenous productivity θ has completely recovered by then.

19We use the raw TFP measure from Fernald (2014) adjusted for labor quality. It is constructed as a Solow residual
and is the empirical counterpart to the endogenous TFP A (θ,m) from the model. See Figure 14 in the Appendix for
a comparison with other TFP measures.

20Our counterfactual experiment relies on aggregate productivity shocks only as our objective is not to provide
a complete story for the 2007-2009 episode but for the recovery period that followed. As we mentioned earlier, our
coordination mechanism may provide equally strong propagation to other theories of the recession based on financial
shocks, policy changes, uncertainty or others.

21In the data, a substantial fraction of the drop in investment is due to a decline in residential investment, which
the model does not address.
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(a) Data: US series centered on 2007Q4
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Figure 10: The 2007-2009 recession and its aftermath
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5 Policy

The prospect of coordination failures is often used in policy debates to justify large government

interventions, including in particular expansionary fiscal policies. In this section, we study the

appropriate policy response in our model when the economy is hindered by a coordination problem

and discuss to what extent policies such as government spending may be beneficial, if at all desirable.

We first solve for the efficient allocation and describe how it can be implemented using various

subsidies. We then consider whether an increase in government spending can be welfare improving

when the efficient subsidies are not available.

5.1 Efficient Allocation

Our model economy suffers from two related inefficiencies. The first inefficiency arises as firms

use their monopoly power to price their products at a markup over their marginal cost. As a

result, firms produce and sell too little. The second inefficiency is due to the effect of the aggregate

demand externality on technological choice. Firms do not internalize that using the high technology

positively impacts the demand that other producers face and therefore fail to coordinate on the

efficient technology level.

To shed light on these inefficiencies, we solve the problem of a constrained social planner that

does not receive any signal and cannot aggregate the information available to private agents as

in Angeletos and Pavan (2007). The planner can, however, instruct each firm to use the high

technology with some probability z(v) ∈ [0, 1] as a function of its private signal v. With this policy

instrument, the planner’s problem is

VSP (K, θ−1) = max
06z(·)61

E

[

max
K ′,L

U
(

Ā (θ,m)KαL1−α −m (θ, z) f −K ′ + (1− δ)K,L
)

+ βVSP (K
′, θ)

∣

∣

∣

∣

∣

θ−1

]

where m (θ, z) =
∫ √

γvφ
(√

γv (v − θ)
)

z(v)dv. Notice that we already use the result, shown in

the proof in Appendix E.5, that the economy admits aggregation and directly write the planner’s

problem using the aggregate production function.

We characterize the constrained efficient allocation and its implementation in the following

proposition.

Proposition 5. The competitive equilibrium with incomplete information is inefficient, but the

constrained efficient allocation can be implemented with a lump-sum tax on the household, an input

subsidy skl and a profit subsidy sπ to intermediate goods producers such that 1 − skl =
σ−1
σ and

1 + sπ = σ
σ−1 .

Proposition 5 shows that the constrained efficient allocation can be implemented in the compet-
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itive economy using simple instruments that correct the two distorted margins directly. To offset

the distortions induced by the monopoly power, the planner uses an input subsidy skl, standard

in the New-Keynesian literature, to encourage firms to expand to the optimal scale of operation.

Despite this input subsidy, firms still operate at a suboptimal level because of the aggregate de-

mand externality and the planner needs an additional instrument to induce the right technology

choice. Perhaps surprisingly, a simple linear profit subsidy sπ is enough to correct this margin in

the global game. By increasing profits, this subsidy makes firms internalize the impact of their

technology choice on aggregate demand and incentivizes the adoption of the high technology. As a

result, one should expect firms to coordinate more easily on the high technology under the optimal

policy, and the basin of attraction for the high regime should consequently expand. In other words,

the economy would visit the low regime less frequently and the incidence and persistence of deep

recessions would be reduced. Finally, to complete the implementation, we use a non-distortionary

lump-sum tax on the household to ensure that the government budget constraint balances every

period.22

5.2 Government Spending

The optimal implementation result involves the use of input and profit subsidies. In the event

that such instruments are unavailable to policymakers, for instance due to political economy rea-

sons, we consider the impact of government spending on the economy. Since firms operate at an

inefficiently low technological level in equilibrium, an increase in aggregate demand caused by gov-

ernment spending may, in principle, have a positive impact on welfare by raising the incentives to

adopt the high technology. We investigate this claim in the context of our model.

We find that, in general, government spending is detrimental to welfare because the crowding

out of private investment hurts coordination in subsequent periods. Government spending thus

creates dynamic welfare losses. However, we also find that government spending can be welfare

improving in a small region of the state space if the preferences of the household allow for a wealth

effect on the labor supply, even in the absence of nominal rigidities or other frictions that tend to

favor such policy interventions.

We now describe how these two channels operate. To do so, we assume that government

spending is pure government consumption not valued by the household and financed through a

lump-sum tax on the household.23

Crowding out of private spending

As in the neoclassical growth model, an increase in government spending leads to a reduction in

the wealth of households which, as a result, save less in physical capital. Consequently, the amount

22This implementation is not unique and we show, in Appendix E.5, that another implementation based on a single
sales subsidy can correct both margins at the same time because of the specific structure implied by the Dixit-Stiglitz
model of monopolistic competition.

23As Ricardian equivalence holds in our environment the timing of taxes is irrelevant.
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of capital available in the following periods is reduced, which hurts coordination and reduces the

measure of firms adopting the high technology, in contrast to what efficiency requires. In this

sense, perhaps in contradiction with the common intuition, the coordination problem magnifies the

crowding out effect of government spending in our model.

We can precisely establish this point in our benchmark framework. With GHH preferences, the

crowding out effect associated with government spending unambiguously leads to welfare losses.

Proposition 6. Under GHH preferences, for γv large, an unforeseen one-time increase in govern-

ment spending financed by lump-sum taxes reduces welfare.

The intuition behind this result is as follows. Under GHH preferences, the equilibrium output

and employment only depend on current capital K, productivity θ and the measure of firms with

high technology m. When γv is large, risk at the time of the technology choice is negligible and

the stochastic discount factor is irrelevant in the surplus expression (16). As a result, in the limit

as γv → ∞, government spending has no impact on the outcome of the current coordination game.

The measurem remains unaffected and only the crowding out effect remains. Government spending

is thus a pure waste of resources.

Wealth effect on the labor supply

When the assumption of GHH preferences is relaxed, the labor supply curve of the household

is affected by government spending.24 As the household gets poorer, labor supply goes up, thereby

putting downward pressure on wages. With cheaper inputs, firms expand and are more tempted to

use the high technology, which alleviates the coordination problem and may result in welfare gains.

Figure 11 illustrates the mechanism. The upper (red) and the lower (blue) curves represent the

high and the low equilibria of the model with complete information. The black curves represent

the unique equilibrium of the model with incomplete information, with and without government

spending G. As government spending increases, firms are more tempted to use the high technology

and the zone with multiple equilibria shifts to the left, from the dotted to the shaded region. As a

result, the low equilibrium ceases to exist for the range of K to the right of the shaded region: the

wage would be so low in that equilibrium that operating at a large scale with the high technology

would always be preferable. In the environment with incomplete information, the equilibrium of

the global game lies between the two equilibria of the complete information setup. The curve

that indicates the unique equilibrium selected by the global game therefore also shifts to the left,

from the dashed curve to the solid one. Notice that for values of K in the transition region, the

resulting increase in the mass of firms using the high technology increases the endogenous TFP

Ā which increases output, and, potentially, consumption, investment and welfare. Additionally,

government spending can also helps coordination in subsequent periods. If it succeeds in raising

24We can no longer derive all our theoretical results under these new preferences, but the model can be solved
numerically. We make sure, in particular, that uniqueness still obtains for the global game in our numerical simula-
tions.
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investment, government spending can move the economy from the bad regime to the good one,

therefore generating potentially large dynamic welfare gains.

O
u
tp
u
t
Y

Capital K

G > 0
G = 0

Figure 11: Impact of an increase in government spending on coordination

Numerical simulations

To illustrate the overall impact of government spending on the economy, we proceed to a series

of simulations. To allow for a wealth effect on the labor supply, we relax the assumption of GHH

preferences and use instead standard separable preferences U(C,L) = logC − (1 + ν)−1L1+ν . The

parameters and the details of the exercise are included in Appendix C. We consider an economy

in which government spending Gt is high Gt = G > 0 with probability 1/2 and low Gt = 0 with

probability 1/2. The draws are independent across time. We set G to equal 0.5% of the steady-state

level of output and we assume that the value of G is revealed to all agents at the beginning of the

period.

Figure 12 shows the outcome of these simulations. In the top panel, we see that an increase in

government spending G helps firms coordinate on the high technology in some region of the state

space. Interestingly, this effect is only present for values of K in which the economy is close to

the transition in m between the low and the high regime. Elsewhere, G has little to no impact on

coordination. On Panel (b), we see that the interaction of coordination and government spending

can give rise to large contemporaneous multipliers for output. When the gains from coordination

are large enough to offset the crowding out effect, government spending may improve welfare, as

expressed in consumption equivalent terms on panel (c). Notice, however, that government spending

is generally detrimental to welfare, as the dynamic welfare losses coming from the crowding out
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effect dominate in most of the state space. Only in the region where the economy is close to a

transition from the low to the high regime does government spending help coordination sufficiently

to improve welfare. This result highlight the importance of the timing of government intervention.25
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Figure 12: Impact of an increase in government spending for θ = θ−1 = 0

6 Conclusion

We develop a dynamic stochastic general equilibrium model of business cycles with coordination

failures. The model provides an alternative foundation for Keynesian-type demand-deficient down-

turns as the economy may fall into long-lasting recessions due to the failure of firms to coordinate

on a higher output. The calibrated model outperforms the RBC benchmark in terms of business

cycles asymmetries. It also replicated salient features of the slow recovery from the Great Reces-

sion. Government spending policies are generally detrimental to welfare, but may sometimes be

25Auerbach and Gorodnichenko (2012) find that the fiscal multiplier for total government spending in the United
States is in general small but exceeds 1 during recessions. This evidence is potentially consistent with the model if
the small recessions during that period coincide with episodes during which the economy slightly enters the transition
zone before recovering.

34



welfare improving, without relying on nominal rigidities, when the economy is about to transition

between regimes.

In this paper, we have limited the scope of our policy analysis to simple subsidies and a basic

government spending policy, but other types of interventions may help alleviate the coordination

problem. For instance, in the presence of nominal rigidities, monetary policy may encourage coor-

dination in the future by affecting interest rates and the rate of accumulation of capital. Investment

subsidies and other types of government spending may also lead to different conclusions.

Increasing returns in the firm’s problem are an essential part of our mechanism. In this paper,

we have focused on a simple binary technological choice, but we believe that the central mechanism

of the paper applies to a larger class of models with increasing returns and other forms of non-

convexities. For instance, it would be interesting to extend the model to include fixed cost of

adjusting capital or labor, which have been widely documented in the empirical literature.

More broadly, we believe that the interaction of demand linkages and increasing returns can

generate interesting mechanisms in other contexts. For instance, the possibility of falling in the low

regime may have interesting asset pricing implications, as we can interpret our model as providing

a theory of endogenous rare disasters. Another likely important factor influencing coordination is

social learning. In Schaal and Taschereau-Dumouchel (2023), we consider an environment in which

people learn from the actions of others in an investment game. The interaction of complementaries

and social learning give rise to exuberant periods of economic activity followed by brutal crashes.
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A Additional Figures - For online publication
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Figure 13: Impact of detrending on GDP and TFP
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Figure 14: Various measures of TFP over 2005-2015
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B Data - For online publication

B.1 Aggregate data

Table 3 details the data sources. All time series are quarterly from 1985 to 2015.26 All time

series are seasonally adjusted. For all time series, we remove a linear trend from the log series.

Table 3: Data sources

Variable Source

Output BEA - Real Gross Domestic Product
Investment BEA - Real Gross Domestic Investment
Hours BLS - Nonfarm Business sector: Hours of all persons
Consumption BEA - Real Personal Consumption Expenditures
Total Factor Productivity Fernald (2014): Raw Business Sector TFP

B.2 Micro data

For micro moments, we use Compustat from 1985 to 2015. Our estimation of TFP, markups

and fixed cost follows closely De Loecker et al. (2020) and Chiavari and Goraya (2024). We use all

industries except for finance (NAICS 52) because our model is not fit to account for the behavior of

financial firms and mining (NAICS 21) because of too many implausible outliers in our estimates

for that sector. All nominal variables (SALE, PPEGT, COGS, XSGA) are deflated using GDP

deflators from the BEA. We drop any negative or missing data.

To apply the cost share approach from De Loecker et al. (2020), we construct a measure of user

cost of capital rt = it − Etπt+1 + δ where it is Moody’s Seasoned AAA Corporate Bond at the

annual frequency, Etπt+1 is the expected inflation of capital goods that we obtain from the predicted

component of an AR(1) estimated on investment deflators from the BEA. The depreciation rate δ

is set to 10% annually.

We assume the production function of firm i in sector j at time t is Cobb-Douglas yijt =

Aijtk
1−αj

ijt l
αj

ijt. We interpret lijt as capturing all variable inputs and use COGS (Cost of Goods Sold)

as empirical proxy for the factor payments. The capital stock is proxied with PPEGT (Property,

Plant and Equipment). The firm-level cost share of variable inputs is calculated as

αijt = COGSijt/ (COGSijt + rtkijt) .

26Before 1985, the economy appears to be on a different trend. We therefore limit ourselves to data after 1985 to
simplify the detrending.
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We use for factor share αj the median of the cost shares at the 2-digit industry level. Revenue TFP

is computed from

TFPRijt = log
(

SALEijt/
(

COGS
αj

ijtk
1−αj

ijt

)

)
)

and markups from

µijt = αjSALEijt/COGSijt.

We proxy fixed production costs with XSGA (Selling, General and Administrative), an often used

measure of overhead costs.

C Simulation of Government Spending - For online publication

Table 4 details the parameters of the model used to illustrate the impact of shocks to government

spending. We take the same parameters as the calibration except when necessary to highlight the

mechanism.

Table 4: Parameters

Parameter Value Source/Target

Time period one quarter
Total factor productivity A = 1 Normalization
Capital share α = 0.3 Labor share 0.7

Discount factor β = 0.951/4 0.95 annual

Depreciation rate δ = 1− 0.91/4 10% annual
Risk aversion γ = 1 log utility
Elasticity of labor supply ν = 0.4 Jaimovich and Rebelo (2009)
Persistence θ process ρθ = 0.94 Autocorrelation of log output
Long-run standard deviation of ǫθ σθ = 0.006 Standard deviation of log output
Elasticity of substitution σ = 2.92 Hsieh and Klenow (2014)
Fixed cost f = 0.0145 See text
TFP gain from high technology ω = 1.017 See text
Precision of private signal γv = 1, 013, 750 See text
Size of government spending G = 0.00662 0.5% of average output

D Complete Information: Proofs - For online publication

D.1 Equilibrium characterization

Proposition 1. For a given measure mt of firms with high technology the equilibrium output of

the final good is given by

Yt = A (θt,mt)K
α
t L

1−α
t ,

42



where A (θt,mt) =
(

mtAh exp (θt)
σ−1 + (1−mt)Al exp (θt)

σ−1
)

1
σ−1

and aggregate labor is

Lt =

[

(1− α)
σ − 1

σ
A (θt,mt)K

α
t

]
1

α+ν

.

The corresponding production and profit levels of intermediate firms are, for i ∈ {h, l},

Yit =

(

Ai exp (θt)

A (θt,mt)

)σ

Yt and Πit =
1

σ

(

Ai exp (θt)

A (θt,mt)

)σ−1

Yt.

Proof. The household’s problem delivers the two standard conditions

Uc (Ct, Lt) = βE [(Rt+1/Pt+1 + 1− δ)Uc (Ct+1, Lt+1)] and Lν
t =

Wt

Pt
. (19)

The first order conditions for an individual firm of type i ∈ {h, l} in terms of capital and labor are

α
σ − 1

σ

PtY
1
σ
t Y

1− 1
σ

it

Kit
= Rt and (1− α)

σ − 1

σ

PtY
1
σ
t Y

1− 1
σ

it

Lit
= Wt. (20)

Combining both equations, we obtain the expression

σ − 1

σ
PtY

1
σ
t Y

− 1
σ

it =
1

Ai exp (θt)

(

Rt

α

)α( Wt

1− α

)1−α

.

Since Pit

Pt
=
(

Yit

Yt

)− 1
σ
, we recognize in this expression the optimal strategy for firms to price their

products at a constant markup σ
σ−1 over marginal cost,

Pit =
σ

σ − 1

1

Ai exp (θt)

(

Rt

α

)α( Wt

1− α

)1−α

. (21)

The price of the final good is

Pt =
(

mtP
1−σ
ht + (1−mt)P

1−σ
lt

)
1

1−σ =
σ

σ − 1

1

A (θt,mt)

(

Rt

α

)α( Wt

1− α

)1−α

. (22)

We may then express individual production

Yit =

(

Pit

Pt

)−σ

Yt =

(

Ai exp (θt)

A (θt,mt)

)σ

Yt, (23)

and aggregate output of the final good

Yt =

(

mtY
σ−1
σ

ht + (1−mt)Y
σ−1
σ

lt

)
σ

σ−1

= A (θt,mt)K
α
t L

1−α
t . (24)
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Derive the factor demands from the first order conditions,

Kit = α
σ − 1

σ

PtY
1
σ
t Y

1− 1
σ

it

Rt
= α

σ − 1

σ

(

Ai exp (θt)

A (θt,mt)

)σ−1 PtYt

Rt

Lit = (1− α)
σ − 1

σ

(

Ai exp (θt)

A (θt,mt)

)σ−1 PtYt

Wt
.

Market clearing on the factor markets implies

Kt = mtKht + (1−mt)Klt = α
σ − 1

σ

PtYt

Rt

Lt = mtLht + (1−mt)Llt = (1− α)
σ − 1

σ

PtYt

Wt
.

The equilibrium level of labor as a function of mt can be obtained by combining the household’s

labor supply equation to the aggregate labor demand:

Lt =

(

Wt

Pt

)
1
ν

=

(

(1− α)
σ − 1

σ

Yt

Lt

)
1
ν

,

which delivers the equilibrium labor and output levels

Lt =

[

(1− α)
σ − 1

σ
A (θt,mt)K

α
t

]
1

α+ν

(25)

Yt =

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(

A (θt,mt)K
α
t

)
1+ν
α+ν . (26)

Finally, we may now derive expressions for individual profits:

Πit = PitYit −RtKit −WtLit =
1

σ
PitYit =

1

σ

(

Ai exp (θt)

A (θt,mt)

)σ−1

PtYt. (27)

D.2 Multiplicity of equilibria

Proposition 2. Consider the following condition on parameters:

1 + ν

α+ ν
> σ − 1. (14)

Under condition (14), there exist thresholds BH < BL such that:

i) if AeθtKα
t < BH , the static equilibrium is unique and all firms choose the low technology, mt = 0;

ii) if AeθtKα
t > BL, the static equilibrium is unique and all firms choose the high technology, mt = 1;

iii) if BH 6 AeθtKα
t 6 BL, there are three static equilibria: two in pure strategies, mt = 1 and

mt = 0, and one in mixed strategies, mt ∈ (0, 1).
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If condition (14) is not satisfied, the static equilibrium is always unique.

Proof. Substituting in the equilibrium profit functions derived in proposition 1, the technology

decision problem becomes (setting Pt = 1 as the numéraire):

Ait = argmax
Ai∈{Ah,Al}

{

1

σ

(

Ah exp (θt)

A (θt,mt)

)σ−1

Yt − f,
1

σ

(

Al exp (θt)

A (θt,mt)

)σ−1

Yt

}

.

The technology decision is governed by the sign of the surplus from choosing high technology which

we define as

∆Π (K, θ,m) ≡ Πh−Πl−f =
1

σ

Ah exp (θ)
σ−1 −Al exp (θ)

σ−1

A (θ,m)σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν−f.

The economy admits a pure strategy equilibrium with high technology if and only if ∆Π (K, θ, 1) > 0,

which is equivalent to

1

σ

Ah exp (θ)
σ−1 −Al exp (θ)

σ−1

Ah exp (θ)
σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(Ah exp (θ)K
α)

1+ν
α+ν − f > 0.

A high equilibrium exists if and only if the following condition is satisfied:

AeθKα > 1

ω

σ

σ − 1

(

(σ − 1) f

1− ω1−σ

)
α+ν
1+ν

≡ BH .

Similarly, there exists a pure strategy equilibrium with low technology if and only if ∆Π (K, θ, 0) 6 0,

which is equivalent to

1

σ

Ah exp (θ)
σ−1 −Al exp (θ)

σ−1

Al exp (θ)
σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(Al exp (θ)K
α)

1+ν
α+ν − f 6 0.

A low equilibrium exists if and only if the following condition is satisfied:

A exp (θ)Kα 6 σ

σ − 1

(

(σ − 1) f

ωσ−1 − 1

)
α+ν
1+ν

(1− α)−
1−α
1+ν ≡ BL.

The thresholds are such that BL > BH if and only 1+ν
α+ν > σ − 1.

Next, let us consider the mixed strategy equilibrium. Firms are indifferent between both tech-

nology if

1

σ

Ah exp (θ)
σ−1 −Al exp (θ)

σ−1

A (θ,m)σ−1

(

(1− α)
σ − 1

σ

)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f = 0.

There is a mixed strategy equilibrium if there is a solution to this equation with m ∈ (0, 1). We
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can rewrite this equation as

AeθKα =
σ

σ − 1

(

(σ − 1) f

ωσ−1 − 1

)
α+ν
1+ν

(1− α)−
1−α
1+ν
(

m
(

ωσ−1 − 1
)

+ 1
)

α+ν
1+ν

− 1
σ−1 . (28)

If 1+ν
α+ν > σ− 1, the right-hand side is strictly decreasing in m and equals BL for m = 0 and BH for

m = 1. Therefore, as long as BH < AeθKα < BL there is a mixed strategy equilibrium in addition

to the two others. Notice that the equilibrium m is decreasing in AeθKα.

If 1+ν
α+ν 6 σ − 1, then BL 6 BH and the right-hand side of (28) is increasing in m from BL to BH .

There is therefore a unique static equilibrium for all AeθKα.

D.3 Efficiency

Proposition 3. If 1+ν
ν+α > σ − 1, there exists a threshold BSP , with BSP ≤ BL, such that the

planner makes all firms use the high technology, mt = 1, if AeθtKα
t > BSP and firms use the low

technology, mt = 0, if AeθtKα
t 6 BSP . The threshold BSP is lower than BH for σ small.

Proof. Consider the planning problem:

max
Kt+1,Lt,mt

E

∞
∑

t=0

βtU

(

(

mtY
σ−1
σ

ht + (1−mt)Y
σ−1
σ

lt

)
σ

σ−1

+ (1− δ)Kt −mtf −Kt+1, Lt

)

subject to

Yit = Ai exp (θt)K
α
itL

1−α
it , i ∈ {h, l}

Kt = mtKht + (1−mt)Klt

Lt = mtLht + (1−mt)Llt.

In the optimal allocation, the marginal products are equalized across firms:

α
Y

1
σ
t Y

1− 1
σ

ht

Kht
= α

Y
1
σ
t Y

1− 1
σ

lt

Klt
and (1− α)

Y
1
σ
t Y

1− 1
σ

ht

Lht
= (1− α)

Y
1
σ
t Y

1− 1
σ

lt

Llt
.

Combining these two equations, we obtain the same aggregation result that we derived in propo-

sition (1), i.e., Yit =
(

Ai exp(θt)

A(θt,mt)

)σ
Yt and Yt = A (θt,mt)K

α
t L

1−α
t . The planner’s problem then

reduces to

max
Kt+1,Lt,mt

E

∞
∑

t=0

βtU
(

A (θt,mt)K
α
t L

1−α
t + (1− δ)Kt −mtf −Kt+1, Lt

)

.

The optimality for labor is

(1− α)A (θt,mt)K
α
t L

−α
t = Lν

t .
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In particular, the planner’s problem inherits the structure of the competitive economy, which can

be solved in two stages thanks to the GHH preferences. Solving for Lt, one obtains

Lt =
[

(1− α)A (θt,mt)K
α
t

]
1

α+ν ,

a similar expression as (12) for the competitive equilibrium, except that the monopoly distortions,

captured by σ
σ−1 do not distort the factor demand. Plugging this expression back in the objective

function and noticing that Yt − L1+ν
t

1+ν = α+ν
1+ν Yt, the planner’s problem can be rewritten as

max
Kt+1,mt

E

∞
∑

t=0

βt 1

1− γ

(

α+ ν

1 + ν
(1− α)

1−α
α+ν

(

A (θt,mt)K
α
t

)
1+ν
α+ν −mtf + (1− δ)Kt −Kt+1

)1−γ

,

so that the maximization over mt boils down to maximizing production net of disutility of labor,

α+ ν

1 + ν
(1− α)

1−α
α+ν

(

A (θt,mt)K
α
t

)
1+ν
α+ν −mtf.

This problem is strictly convex in m when 1+ν
α+ν > σ − 1, so that the planner always picks a corner

solution mt = 0 or mt = 1. Comparing both values, the planner uses the high technology if and

only if

α+ ν

1 + ν
(1− α)

1−α
α+ν (Ah exp (θt)K

α
t )

1+ν
α+ν − f > α+ ν

1 + ν
(1− α)

1−α
α+ν (Al exp (θt)K

α
t )

1+ν
α+ν ,

which is equivalent to the condition

AeθtKα
t >

(

1

(1− α)
1−α
α+ν

1 + ν

α+ ν

f

ω
1+ν
α+ν − 1

)
α+ν
1+ν

≡ BSP ,

where BSP is a threshold such that the planner picks the high technology if and only if AeθtKα
t ≥

BSP . First, let us show that BSP ≤ BL:

BSP ≤ BL ⇔ 1 + ν

α+ ν

1

ω
1+ν
α+ν − 1

≤
(

σ

σ − 1

)
1+ν
α+ν σ − 1

ωσ−1 − 1

which is satisfied if
1 + ν

α+ ν

1

ω
1+ν
α+ν − 1

≤ σ − 1

ωσ−1 − 1
.

The function f(x) = 1
x (ω

x − 1) being increasing, we then conclude that BSP < BL under the

condition that 1+ν
α+ν > σ − 1.

Let us now compare BSP and BH :

BSP ≤ BH ⇔ 1 + ν

α+ ν

1

ω
1+ν
α+ν − 1

≤
(

σ

σ − 1

)
1+ν
ν+α 1

ω
1+ν
α+ν

−σ+1

σ − 1

ωσ−1 − 1
.
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The left-hand side is independent of σ. Since limσ→1
ωσ−1−1
σ−1 = log ω, the right-hand side goes to

∞ as σ → 1 from above and BSP ≤ BH for σ small enough.

E Incomplete Information: Proofs - For online publication

E.1 Notation and Definitions

This section introduces some useful notation and restates various equilibrium results established

in the paper when the economy is subject to an input subsidy skl, a sales subsidy sy, a profit subsidy

sπ and a lump-sum tax on the household to finance the subsidies. Under these subsidies the problem

of the firm becomes

Πit = max
Yit,Pit,Kit,Lit

(1 + sy)PitYit − (1− skl) (RtKit +WtLit)

subject to 4 and 5 and where the technology choice is such that

uj = uh ⇐⇒ Eθ [Uc (Ct, Lt) ((1 + sπ) (Πh (Kt, θt,mt)−Πl (Kt, θt,mt))− f) | θt−1, vjt] > 0.

Notation

As introduced in the main text, we denote by A the endogenous aggregate TFP of the economy,

with

A (θ,m) ≡ AeθΩ (m) ,

where Ω (m) ≡
(

m
(

ωσ−1 − 1
)

+ 1
)

1
σ−1 is an average TFP term across firms. The equilibrium level

of output and labor as a function of K, θ and m is

Y (K, θ,m) ≡
[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν

A (θ,m)
1+ν
α+ν Kα 1+ν

α+ν ,

and labor

L (K, θ,m) ≡
[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1

α+ν

A (θ,m)
1

α+ν K
α

α+ν .

Assuming that the final good is the numéraire (Pt = 1), the rental rate of capital is

R (K, θ,m) ≡ α
σ − 1

σ

1 + sy
1− skl

Y (K, θ,m)

K
.

To lighten notation, it is also useful to introduce the gross output level net of fixed costs and

depreciation

y (K, θ,m) ≡ Y (K, θ,m) + (1− δ)K −mf,
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and the corresponding net interest rate

r (K, θ,m) ≡ R (K, θ,m) + 1− δ.

Finally, we denote the equilibrium output level for firms of type h and l by

Yh (K, θ,m) ≡ ωσ

Ω (m)σ
Y (K, θ,m) and Yl (K, θ,m) ≡ 1

Ω (m)σ
Y (K, θ,m) ,

and profit rates

Πh (K, θ,m) ≡ 1

σ

1 + sy
1− skl

ωσ−1

Ω (m)σ−1Y (K, θ,m) and Πl (K, θ,m) ≡ 1

σ

1 + sy
1− skl

1

Ω (m)σ−1Y (K, θ,m) .

We sometimes abuse notation in part E.4 of the proofs, once conditions for existence and

uniqueness of a solution to the global game have been established, by writing Y (K, θ−1, θ) =

Y (K, θ,m (K, θ−1, θ)), R (K, θ−1, θ) = R (K, θ,m (K, θ−1, θ)), and so on. Furthermore, we use the

vector notation θ = (θ−1, θ)
′ in several parts of the proofs to avoid spelling out the entire state

space.

Assumptions and Definitions

Our existence and uniqueness proofs require the value and policy functions to be bounded. We

thus restrict the fundamental to remain between two bounds
[

θ, θ
]

, chosen large enough that they

contain most of the ergodic distribution of θ.27

Definition 3. Let Θ =
[

θ, θ
]

. The fundamental θ follows the autoregressive process

θ = min
(

max
(

ρθ−1 + eθt , θ
)

, θ
)

,

and we denote its transition density π (θ, dθ′) = Pr {θt+1 ∈ [θ′, θ′ + dθ′] | θt = θ}.

Definition 4. Let K =
[

0,K
]

where K is implicitly defined by

Y
(

K, θ, 1
)

+ (1− δ)K − L
(

K, θ, 1
)1+ν

1 + ν
= K.

Definition 4 defines the set in which the stock of capital lies and K which corresponds to the

maximal output ever achievable is an upper bound on capital. The upper bound K exists and is

unique under assumption 1 below.

27For arbitrarily large bounds, this restriction has no bearing on our quantitative results and the Bayesian updating
rules for untruncated normals, that we use to update private beliefs in the static global game, provide an arbitrarily
good approximation to the true beliefs with truncated normals for the relevant part of the ergodic distribution of θ.
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Assumption 1. The parameters satisfy

σ − 1

σ

1− α

1 + ν

1 + sy
1− skl

6 1.

Assumption 1 is a feasibility condition required by the GHH preferences. It guarantees that

total production, y (K,θ), net of minimum consumption, (1 + ν)−1L (K,θ)1+ν , is positive, so that

there exists a solution to the static equilibrium in production.

Assumption 2. The lower bound θ is chosen sufficiently small that there exists K− > 0 such that

y (K−, θ, θ)− L(K−,θ,θ)
1+ν

1+ν > K− and βE [r (K−, θ, θ′) | θ = θ] 6 1.

Assumption 2 is from Coleman (1991) and is necessary to show the existence of a non-zero

equilibrium. Note that there always exists a K− that satisfies the first part of the definition given

our choice for the production function and m ≃ 0. The key requirement comes from the second

part and can be achieved by assuming that θ is sufficiently low.

E.2 Main proposition

Proposition 4 (Full). Under Assumption 1-2, for γv large and ω sufficiently close to 1 such that

i) approximation (31) holds, ii) parameters satisfy

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
, (18)

and
1− α 1+ν

α+ν

α 1+ν
α+ν

> 1√
2π

ωσ−1 − 1

σ − 1

γθ + γv√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

(29)

and iii) y (K, θ−1, θ)− L(K,θ−1,θ)
1+ν

1+ν is weakly increasing in K, there exists a unique dynamic equi-

librium. The equilibrium technology decision takes the form of a continuous cutoff v̂ (K, θ−1) such

that firm j invests if and only if vj > v̂ (K, θ−1). Furthermore, the cutoff is a decreasing function

of its arguments.

Proof. We prove this proposition in several steps. In a first step, we show in section E.3 below that,

for a small departure from complete information, i.e., when γv is large, risk becomes irrelevant for

firms and the stochastic discount factor drops out of their technology decision (lemma A1). In that

case, we can solve the global game independently from the rest of the dynamic equilibrium. In

proposition A1, we show that there exists a unique equilibrium to the global game under condition

(18) and that the equilibrium technology decision takes the form of a cutoff strategy v̂ (K, θ−1)

such that firms choose high technology if and only if they receive a signal vj above that threshold.

Using the resulting v̂ from the global game, we show the existence and uniqueness of the dy-

namic equilibrium in section E.4. Proposition A2 establishes existence under several additional

assumptions. First, assumption 1 ensures that the firm’s decision is well defined and bounded by
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putting an upper bound on the subsidies that they receive. It is trivially satisfied for a competi-

tive economy without government subsidies, but the proposition shows how the result extends to

economies with input, sales and profit subsidies. Assumption 2 is relatively mild as it only requires

us to choose a sufficiently low bound θ. Second, the condition that ω is close to 1 ensures that

the Euler equation is a monotone operator, which our proof uses to prove existence. In particu-

lar, monotonicity requires that R is a nonincreasing function of K, which (29) guarantees (lemma

(A2).(v)), and that output net of fixed costs minus labor, y (K, θ−1, θ) − L(K,θ−1,θ)
1+ν

1+ν , is nonde-

creasing in K, a property satisfied for ω sufficiently close to 1 (lemma (A2).(iv)). These last two

conditions are sufficient but not necessary and could be relaxed in practice.28 Notice also that the

proposition provides the existence of a strictly positive equilibrium, in the sense that consumption

is non-zero whenever K > 0.

Proposition A3 finally establishes uniqueness of the (strictly positive) equilibrium under the

same conditions on the parameters.

E.3 Global game

Description

This section describes the solution of the static game played every period between the interme-

diate goods producers.

The decision of intermediate producer j to operate at high technology over low technology is

determined by the sign of the surplus,

∆Π (K, θ−1, vj ,m) = Eθ [UC (C,L) ((1 + sπ) (Πh (K, θ,m)−Πl (K, θ,m))− f) | θ−1, vj ] ,

such that producer j chooses high technology if and only if ∆Π > 0. In equilibrium, C and L

are functions of the aggregate state space (K, θ−1, θ), which we sometimes write (K,θ) with vector

θ = (θ−1, θ)
′. Anticipating on the rest of the proof, let us denote the inverse marginal utility of

consumption P (K,θ) = [UC (C (K,θ) , L (K,θ))]−1. Substituting with the equilibrium value of

profits, the expected surplus from operating at high vs. low technology for firm j with a perceived

mass of high technology users m (K, θ, θ−1) is

∆Π (K, θ−1, vj ,m) = Eθ

[

1

P (K,θ)

(

1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)− f

)

| θ−1, vj

]

.

(30)

The presence of the stochastic discount factor in the problem of the firm introduces an additional

complication in comparison to standard global games without general equilibrium effects. Fortu-

nately, under the assumption that γv is large, i.e., for a small deviation from common knowledge,

the stochastic discount factor drops out of the equation and is, thus, asymptotically irrelevant. The

28For instance, one could check numerically that functions R and y have the correct monotonicity properties for
the proof to go through.
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outcome of the global game may thus be approximated by a simpler problem, which we describe

below.

Approximation

Lemma A1. Let P : (K,θ) ∈ K× Θ2 → R bounded, continuous, positive and bounded away from
0 over

[

K,K
]

×Θ2 for all K > 0. Then for all v̂ ∈ R,

∣

∣

∣

∣

∣

∣

Eθ

[

(1 + sπ) (Πh (K, θ,m)− Πl (K, θ,m))− f

P (K, θ−1, θ)
| θ−1, vj

]

− Eθ





(1 + sπ) (Πh (K, θ,m)− Πl (K, θ,m))− f

P
(

K, θ−1,
γθρθ−1+γvvj

γθ+γv

) | θ−1, vj





∣

∣

∣

∣

∣

∣

−→
γv→∞

0.

Furthermore, the convergence is uniform over
[

K,K
]

×Θ2.

Proof. To lighten notation, denote

∆Y (K, θ,m) ≡ (1 + sπ) (Πh (K, θ,m)−Πl (K, θ,m))−f =
1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)−f.

Since θ | θ−1, vj ∼ N
(

γθρθ−1+γvvj
γθ+γv

, 1
γθ+γv

)

, we can control the above expression as follows:

∣

∣

∣

∣

∣

∣

Eθ

[

∆Y (K, θ,m)

P (K, θ−1, θ)
| θ−1, vj

]

− Eθ





∆Y (K, θ,m)

P
(

K, θ−1,
γθρθ−1+γvvj

γθ+γv

) | θ−1, vj





∣

∣

∣

∣

∣

∣

6∆Y
P θ

inf
θ
P (K, θ−1, θ)

2Eθ

[
∣

∣

∣

∣

θ − γθρθ−1 + γvvj
γθ + γv

∣

∣

∣

∣

| θ−1, vj

]

6 ∆Y
P θ

inf
θ
P (K, θ−1, θ)

2

1

γθ + γv

√

2

π
,

where P θ and ∆Y are the modulus of uniform continuity of P and ∆Y along θ. Therefore, we

have pointwise convergence and uniform convergence on all segments
[

K,K
]

with K > 0 with the

uniform bound ∆Y P θ

inf
[K,K]×Θ2

P (K,θ−1,θ)
2

1
γθ+γv

√

2
π .

Choosing the bound K low enough that
[

K,K
]

contains all the stocks of capital ever visited

along the equilibrium path, the above lemma tells us that, in the limit as γv → ∞, we can

approximate the surplus from choosing the high technology by the simpler expression:

∆Π̃ (K, θ−1, vj ,m) ≡ 1

P
(

K, θ−1,
γθρθ−1+γvvj

γθ+γv

)Eθ [∆Y (K, θ,m) | θ−1, vj ] .

The intuition behind this expression is that, as γv → ∞, consumption risk vanishes and becomes ir-

relevant to firms. This does not mean, however, that uncertainty is unimportant: the firms’ decision

is then entirely driven by strategic concerns, captured by Eθ [∆Y | θ−1, vj ], in which uncertainty

plays a crucial role.

We focus, from now on, on the cases where γv is high and the above approximation holds.
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Under that assumption, the decision of firm j is

Aj = Ah ⇔ Eθ [∆Y (K, θ,m) | θ−1, vj ] > 0. (31)

It is worth noting here that our numerical results suggest that the approximation is very accurate:

under our benchmark calibration, the solutions of the global game using expression (30) and (31)

are virtually indistinguishable.

Existence and Uniqueness

Proposition A1. For γv large enough that approximation (31) holds and

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
, (18)

then the optimal technology decision takes the form of a unique cutoff strategy v̂ (K, θ−1) such that

firm j chooses the high technology if and only if vj > v̂.

Proof. Fix K ∈ K and θ−1 ∈ Θ. Under the hypothesis that γv is large enough that the approxima-

tion (31) holds, firm j chooses the high technology if and only if

∆Π̃ (K, θ−1, vj ,m) > 0 ⇔ Eθ

[

1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)− f | θ−1, vj

]

> 0.

The proof proceeds in two steps. In a first step, we start solving the game by iterated deletion of

dominated strategies. In a second step, we provide conditions under which this procedure converges

towards a unique equilibrium.

� Case 1+ν
α+ν > σ − 1

Step 1. To lighten notation, denote

∆Y (K, θ,m) ≡ 1

σ

(1 + sπ) (1 + sy)

1− skl

ωσ−1 − 1

Ω (m)σ−1Y (K, θ,m)− f

=
1

σ

(1 + sπ) (1 + sy)

1− skl

(

ωσ−1 − 1
)

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθKα
)

1+ν
α+νΩ (m)

1+ν
α+ν

−σ+1 − f.

When 1+ν
α+ν > σ − 1, ∆Y is increasing in all its arguments. We proceed by iterated deletion of

dominated strategies. Initialize the recursion by defining v̂0 = ∞ and v̂0 = −∞, such that it is

dominant to choose the hightechnology for vj > v̂0 and dominant to choose the low technology for

vj 6 v̂0. We now define v̂1 (K, θ−1) such that

Eθ

[

∆Y (K, θ, 0) | θ−1, v̂
1
]

= Eθ

[

∆Y
(

K, θ,Φ
(√

γv
(

θ − v̂0
)))

| θ−1, v̂
1
]

= 0,

which means that it is dominant to choose the high technology for all firms j such that vj > v̂1,
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even if no one else did. Symmetrically, we can define v̂1 (K, θ−1) such that

Eθ [∆Y (K, θ, 1) | θ−1, v̂1] = Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂0))) | θ−1, v̂1] = 0,

such that it is dominant to choose the low technology for all firms j such that vj 6 v̂1 even if all

other firms choose the high technology. By the properties of ∆Y , we must have v̂0 < v̂1 6 v̂1 < v̂0.

This establishes the first iteration of our procedure. By induction, let n > 2 and assume that

v̂0 < . . . < v̂n−1 6 v̂n−1 < . . . < v̂0 such that it is dominant to choose the high technology if

vj > v̂n−1 and dominant to choose low for vj 6 v̂n−1. Define v̂n and v̂n such that

Eθ

[

∆Y
(

K, θ,Φ
(√

γv
(

θ − v̂n−1
)))

| θ−1, v̂
n
]

= 0,

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂n−1))) | θ−1, v̂n] = 0.

By induction, v̂n−1 > v̂n−1, so that Φ
(√

γv
(

θ − v̂n−1
))

6 Φ
(√

γv (θ − v̂n−1)
)

and v̂n > v̂n. Also,

since v̂n−1 < v̂n−2, then Φ
(√

γv
(

θ − v̂n−1
))

> Φ
(√

γv
(

θ − v̂n−2
))

and v̂n < v̂n−1. Symmetrically,

we have v̂n > v̂n−1. This establishes the recursion.

Sequence (v̂n)n>0 is a strictly increasing bounded sequence, therefore it converges. Denote v̂∞ its

limit: v̂n →
n→∞

v̂∞. Symmetrically, establish that (v̂n)n>0 converges towards some limit v̂∞ > v̂∞.

By continuity of ∆Y , we have

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂∞))) | θ−1, v̂

∞] = 0 and Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂∞))) | θ−1, v̂∞] = 0.

Step 2. Define H (K, θ−1, v̂) ≡ Eθ

[

∆Y
(

K, θ,Φ
(√

γv (θ − v̂)
))

| θ−1, v̂
]

. We now provide suffi-

cient conditions such that the implicit equation in v̂,

H (K, θ−1, v̂) = 0,

has a unique solution v̂ (K, θ−1). In particular, this condition is satisfied if H is strictly increasing

in v̂. Since θ | θ−1, vj = v̂ ∼ N
(

γθρθ−1+γv v̂
γθ+γv

, 1
γθ+γv

)

,

H (K, θ
−1, v̂) = Eθ [∆Y (K, θ,Φ (

√
γv (θ − v̂))) | θ

−1, v̂]

= Eε

[

c0

(

Ae
γθρθ

−1+γvv̂

γθ+γv
+ε

Kα

)

1+ν
α+ν Ω

(

Φ

(√
γv

(

γθρθ−1 + γv v̂

γθ + γv
+ ε− v̂

)))
1+ν
α+ν

−σ+1

− f

]

where c0 =
1
σ
(1+sπ)(1+sy)

1−skl

(

ωσ−1 − 1
)

[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

and ε = θ− γθρθ−1+γv v̂
γθ+γv

∼ N
(

0, 1
γθ+γv

)

.

Compute the derivative:

∂ logH

∂v̂
=

1 + ν

α+ ν

γv
γθ + γv

+
∂

∂v̂
logH2 (θ−1, v̂)
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where H2 (θ−1, v̂) = Eε

[

e
1+ν
α+ν

εΩ
(

Φ
(√

γv

(

γθ(ρθ−1−v̂)
γθ+γv

+ ε
)))

1+ν
α+ν

−σ+1
]

. Compute the last term,

∂H2

∂v̂
= −

√
γvγθ

γθ + γv

(

1 + ν

α+ ν
− σ + 1

)

Eε

[

φ

(√
γv

(

γθ (ρθ−1 − v̂)

γθ + γv
+ ε

)) Ω′
(

Φ
(√

γv

(

γθ(ρθ−1−v̂)
γθ+γv

+ ε
)))

Ω
(

Φ
(√

γv

(

γθ(ρθ−1−v̂)
γθ+γv

+ ε
)))

× e
1+ν
α+ν

εΩ

(

Φ

(√
γv

(

γθ (ρθ−1 − v̂)

γθ + γv
+ ε

)))
1+ν
α+ν

−σ+1
]

so that
∣

∣

∣

∂H2
∂v̂

∣

∣

∣
6

√
γvγθ

γθ+γv

(

1+ν
α+ν − σ + 1

)

1√
2π

Ω′

Ω H2 (θ−1, v̂). Since
∣

∣

∣

Ω′(m)
Ω(m)

∣

∣

∣
6 ωσ−1−1

σ−1 , we have

∣

∣

∣

∣

∂ logH2

∂v̂

∣

∣

∣

∣

6
√
γvγθ

γθ + γv

(

1 + ν

α+ ν
− σ + 1

)

1√
2π

ωσ−1 − 1

σ − 1
.

We may now conclude that

∂ logH

∂v̂
> 1 + ν

α+ ν

γv
γθ + γv

−
√
γvγθ

γθ + γv

1√
2π

(

1 + ν

α+ ν
− σ + 1

)

ωσ−1 − 1

σ − 1
.

Therefore, a sufficient condition that guarantees that H is strictly increasing in v̂ is

√
γv

γθ
>

1√
2π

ωσ−1 − 1

σ − 1
.

Note in addition that H −→
v̂→∞

∞ and H −→
v̂→−∞

−∞, therefore there exists a unique solution

v̂ (K, θ−1) to the equation H (K, θ−1, v̂ (K, θ−1)) = 0.

Conclusion. Under the condition (18), there exists a unique solution to the equation

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂))) | θ−1, v̂] = 0,

which is satisfied by both v̂∞ and v̂∞. Therefore, v̂∞ = v̂∞ = v̂ (K, θ−1) and the solution to the

global game is the unique cutoff strategy v̂ (K, θ−1) such that firm j chooses the high technology if

and only if vj > v̂ (K, θ−1).

� Case 1+ν
α+ν 6 σ − 1

In the case that the condition for multiplicity is not satisfied, the proof is similar but easier

since there is strategic substitutability between firms. By iterated deletion of dominant strategies,

define the monotone sequences (v̂n)n>0 and (v̂n)n>0 by

Eθ [∆Y (K, θ,Φ (
√
γv (θ − v̂n−1))) | θ−1, v̂

n] = 0,

Eθ

[

∆Y
(

K, θ,Φ
(√

γv
(

θ − v̂n−1
)))

| θ−1, v̂n
]

= 0.

Then, function Eθ

[

∆Y
(

K, θ,Φ
(√

γv (θ − v̂)
))

| θ−1, v̂
]

is strictly increasing in v̂ without additional

restrictions on the parameter. Conclude as in the previous case.
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Regularity

In this section, we establish a number of regularity conditions and properties of v̂, m, A and Y .

Lemma A2. Under the conditions of proposition A1, (i) v̂ (K, θ−1) is continuous and weakly

decreasing in K and θ−1 and such that

− α 1
K√

γv
γθ+γv

[√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

] 6 ∂v̂

∂K
(K, θ−1) 6 0,

and

− ργθ
√
γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) 6 ∂v̂

∂θ−1
(K, θ−1) 6 0.

(ii) m (K, θ−1, θ) and A (K, θ−1, θ) are bounded, continuous and weakly increasing in all their ar-

guments, (iii) y (K, θ−1, θ) is bounded, continuous and, for ω sufficiently close to 1, increasing in

K, (iv) if in addition assumption 1 is verified, y (K, θ−1, θ)− L(K,θ−1,θ)
1+ν

1+ν is increasing in K, (v)

if parameters are such that

1− α 1+ν
α+ν

α 1+ν
α+ν

> 1√
2π

ωσ−1 − 1

σ − 1

γθ + γv√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

,

then R (K, θ−1, θ) is nonincreasing in K.

Proof. (i) Continuity and monotonicity of v̂ (K, θ−1). Cutoff v̂ (K, θ−1) is implicitly defined by the

function ∆Π̃
(

K, θ−1, v̂,Φ
(√

γv (θ − v̂)
))

= 0 which is a continuously differentiable function of K,

θ−1 and v̂. Under the conditions of proposition A1, d
dv̂∆Π̃ > 0, so the implicit function theorem

tells us that v̂ is continuous and differentiable in a neighborhood of (K, θ−1). In addition, the

implicit function theorem tells us that

∂v̂

∂K
= −

(

∂H

∂v̂

)−1 ∂H

∂K
and

∂v̂

∂θ−1
= −

(

∂H

∂v̂

)−1 ∂H

∂θ−1
,

where

H (K, θ−1, v̂) ≡ ∆Π̃ (K, θ−1, v̂,Φ (
√
γv (θ − v̂)))

= −f +H0

∫
(

Ae
γθρθ−1+γvv̂

γθ+γv
+ε

Kα

)
1+ν
α+ν

×

Ω

(

Φ

(√
γv

(

γθ
γθ + γv

(ρθ−1 − v̂) + ε

)))
1+ν
α+ν

−σ+1 √
γθ + γvφ

(√
γθ + γvε

)

dε,

and H0 = 1
σ
(1+sπ)(1+sy)

1−skl

(

ωσ−1 − 1
)

[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

. Computing the various derivatives, we

get
∂H

∂K
= α

1 + ν

α+ ν

1

K
(H (K, θ−1, v̂) + f)
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∂H

∂θ−1
=

1 + ν

α+ ν

ργθ
γθ + γv

(H (K, θ−1, v̂) + f)

∂H

∂v̂
=

1 + ν

α+ ν

γv

γθ + γv
(H (K, θ−1, v̂) + f)−H0

(

Ae
γθρθ

−1+γvv̂

γθ+γv K
α

)
1+ν
α+ν

(

1 + ν

α+ ν
− σ + 1

)

1

σ − 1

√
γvγθ

γθ + γv

×
∫

e
1+ν
α+ν

εω
σ−1 − 1

Ωσ−1
φ

(√
γv

(

γθ

γθ + γv
(ρθ−1 − v̂) + ε

))

Ω

(

Φ

(√
γv

(

γθ

γθ + γv
(ρθ−1 − v̂) + ε

)))
1+ν
α+ν

−σ+1

×
√
γθ + γvφ

(√
γθ + γvε

)

dε

> 1 + ν

α+ ν

γv

γθ + γv
(H (K, θ−1, v̂) + f)−

(

1 + ν

α+ ν
− σ + 1

)

1√
2π

ωσ−1 − 1

σ − 1

√
γvγθ

γθ + γv
(H (K, θ−1, v̂) + f)

> (H (K, θ−1, v̂) + f)
1 + ν

α+ ν

√
γv

γθ + γv

(√
γv − 1√

2π

ωσ−1 − 1

σ − 1
γθ

)

> 0,

where the last inequality is a consequence of (18). Hence,

− α 1
K√

γv
γθ+γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) 6 ∂v̂

∂K
6 0,

and

− ργθ
√
γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) 6 ∂v̂

∂θ−1
6 0,

which establishes the desired inequalities.

(ii) Continuity and monotonicity of m and A. The continuity of m and A is inherited from that of

v̂ since

m (K,θ) = Φ (
√
γv (θ − v̂ (K, θ−1))) and A (K,θ) = Aeθ

(

m (K,θ)
(

ωσ−1 − 1
)

+ 1
)

1
σ−1 ,

which are bounded on K×Θ2. The monotonicity of m and A is inherited from that of v̂.

(iii) Continuity and monotonicity of y (K,θ). Recall the definition of y:

y (K,θ) ≡
[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθΩ (m (K,θ))
)

1+ν
α+νKα 1+ν

α+ν + (1− δ)K −m (K,θ) f.

Computing the total derivative, we have:

dy

dK
= α

1 + ν

α+ ν

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθΩ (m (K,θ))
)

1+ν
α+νKα 1+ν

α+ν
−1 + 1− δ +

∂y

∂m

∂m

∂K
.

The first term and ∂m
∂K are positive, so we must only compute the sign of ∂y

∂m . Compute the following:

∂y

∂m
=

1 + ν

α+ ν

1

σ − 1

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν (

AeθKα
)

1+ν
α+ν

(

ωσ−1 − 1
)

Ω (m (K,θ))
1+ν
α+ν

−σ+1 − f.
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Using the fact that

f = Eθ

[

1

σ

(1 + sπ) (1 + sy)

1− skl

(

ω
σ−1 − 1

)

[

(1− α)
σ − 1

σ

1 + sy

1− skl

]
1−α
α+ν (

Ae
θ
K

α
)

1+ν
α+ν Ω(m)

1+ν
α+ν

−σ+1 | θ−1, v̂

]

6 1

σ

(1 + sπ) (1 + sy)

1− skl

(

ω
σ−1 − 1

)

[

(1− α)
σ − 1

σ

1 + sy

1− skl

]
1−α
α+ν

(AK
α)

1+ν
α+ν ω

1+ν
α+ν

−σ+1
e

ργθθ
−1+γvv̂

γθ+γv
+ 1

2 (
1+ν
α+ν )

2 1
γθ+γv .

Consequently, we can bound ∂y
∂m :

∣

∣

∣

∣

∂y

∂m

∣

∣

∣

∣

6
(

ωσ−1 − 1
)

y0,

where y0 =
[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

(AKα)
1+ν
α+ν ω

1+ν
α+ν

−σ+1

(

1+ν
α+ν

1
σ−1

e
1+ν
α+ν

θ
+ 1

σ

(1+sπ)(1+sy)
1−skl

e
ργθθ

−1+γvv̂

γθ+γv
+ 1

2

(

1+ν
α+ν

)2 1
γθ+γv

)

.

Using our result from (i), we may then bound the following

∣

∣

∣

∣

∂y

∂m

∂m

∂K

∣

∣

∣

∣

6
(

ωσ−1 − 1
)

y0
α 1

K√
γv

γθ+γv

[√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

] ,

which means that function y is increasing in K for ω close enough to 1.

(iv) This property is used in several lemmas. The argument is the same as above:

y (K,θ)− L (K,θ)1+ν

1 + ν
=

(

1− σ − 1

σ

1− α

1 + ν

1 + sy
1− skl

)

y (K,θ) + (1− δ)K −m (K,θ) f.

Therefore, under all the previous assumptions and assumption 1, then we can always find ω suffi-

ciently close to 1 that y (K,θ)− L(K,θ)1+ν

1+ν is increasing in K.

(v) Monotonicity of R. Recall the definition of R:

R (K, θ−1, θ) = R0A (θ,m (K, θ−1, θ))
1+ν
α+ν Kα 1+ν

α+ν
−1,

where R0 = ασ−1
σ

1+sy
1−skl

[

(1− α) σ−1
σ

1+sy
1−skl

]
1−α
α+ν

. Thus, the derivative with respect to K is

∂R

∂K
= R (K, θ−1, θ)

[

−
(

1− α
1 + ν

α + ν

)

1

K
+

1 + ν

α+ ν

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1

∂m

∂K

]

.

By definition m (K, θ−1, θ) = Φ
(√

γv (θ − v̂ (K, θ−1))
)

, we have

0 6 ∂m

∂K
= −√

γvφ (
√
γv (θ − v̂ (K, θ−1)))

∂v̂

∂K
6
√

γv
2π

α 1
K√

γv
γθ+γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) .

R is strictly increasing in K if

(

1− α
1 + ν

α+ ν

)

1

K
>

1 + ν

α+ ν

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1

√

γv
2π

α 1
K√

γv
γθ+γv

(√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

) .
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A simpler sufficient condition on parameters for the above condition to be satisfied is

1− α 1+ν
α+ν

α 1+ν
α+ν

>
1√
2π

ωσ−1 − 1

σ − 1

γθ + γv√
γv − 1√

2π
ωσ−1−1
σ−1 γθ

.

E.4 Existence and Uniqueness of the Dynamic Equilibrium

This proof builds on the monotone operator and lattice-theoretic techniques developed in

Coleman (1991), Coleman and John (2000), Datta et al. (2002) or Morand and Reffett (2003) and

extends it to the features present in our setup. The proof uses the following version of Tarski’s

fixed point theorem (see Tarski et al. (1955)):

Theorem. [Tarski, 1955] Suppose that (X,>) is a nonempty complete lattice and T : X → X

is an increasing mapping. Then, the set of fixed points of T is a nonempty complete lattice.

Description and Definitions

The objective of this proof is to show the existence and uniqueness of a solution to the Euler

equation in some particular space. For reasons that will appear clearer later, it is useful to repre-

sent the Euler equation in the space of inverse marginal utility, which we denote as p, instead of

consumption functions directly.29 That is to say, we will go back and forth between the spaces of

inverse marginal values and consumption functions through the following mapping,

p (K,θ) = UC (c (K,θ) , L (K,θ))−1 .

Definition 5. Let P be the set

P =
{

p (K,θ) | p : K×Θ2 −→ K such that

(a) 0 6 p (K,θ) 6 UC (y (K,θ) , L (K,θ))−1 for (K,θ) ∈ K×Θ2;

(b) p weakly increasing in K
}

.

Definition 5 describes the set in which the equilibrium inverse marginal utility p lies. We may

now introduce the following definitions which sets up the environment and the Euler equation that

we must solve:

29A similar existence proof can be written in the space of consumption functions as in Coleman (1991). The
uniqueness is, however, problematic in that space since the operator corresponding to the Euler equation is not
pseudo-concave without restrictive assumptions on the preferences. On the other hand, that same operator is naturally
pseudo-concave in the space of inverse marginal utilities as noted by Coleman (2000) and Datta et al. (2002).
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Definition 6. (i) The mapping from marginal consumption value to consumption is

C : R+ ×K×Θ2 −→ R

(p,K,θ) 7→ U−1
C (p, L (K,θ)) = p

1
γ +

L (K,θ)1+ν

1 + ν
;

(ii) The mapping corresponding to the Euler equation is

Z : R+ × P ×K×Θ2 −→ R ∪ {−∞,∞}

(p, P,K,θ) 7→



















0 if p = 0 and
(

K = 0 or P
(

y (K,θ)− C (0,K,θ) ,θ′
)

= 0
)

1
p − βE





r

(

y(K,θ)−C(p,K,θ),θ′

)

P

(

y(K,θ)−C(p,K,θ),θ′

)



 , otherwise;

(iii) The operator providing solutions to the Euler equation is

T (P ) =
{

p ∈ P | Z (p (K,θ) , P,K,θ) = 0 for K ∈ K,θ ∈ Θ2
}

.

Existence

We endow the space P with the pointwise partial order 6, such that p 6 p̂ if p (K,θ) 6 p̂ (K,θ)

for all (K,θ) ∈ K×Θ2 and two binary operations that we refer to as the meet (p∧ p̂) and the join

(p ∨ p̂) for any two points p, p̂ ∈ P. The meet is the greatest lower bound of two elements, i.e.,

(p ∧ p̂) (K,θ) = min {p (K,θ) , p̂ (K,θ)} ,

and the join is the least upper bound, defined as

(p ∨ p̂) (K,θ) = max {p (K,θ) , p̂ (K,θ)} .

Lemma A3. (P,6) is a complete lattice.

Proof. A lattice is complete if each subset has a supremum and an infimum. Consider a subset

X ⊂ P. Clearly, the join of all elements in X, sup
p∈X

p, satisfies sup
p∈X

p 6 UC (y (K,θ) , L (K,θ))−1

and sup
p∈X

p is weakly increasing in K, so sup
p∈X

p ∈ P. A symmetric argument tells us that the meet

of all elements in X, inf
p∈X

p, belongs to P. Therefore, P is a complete lattice.

We now show that mapping T , which associates the solution to the Euler equation for any

future inverse marginal utility P ∈ P is a well-defined monotone mapping from P to P.
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Lemma A4. Under the conditions of proposition A1, assumption 1 and ω close enough to 1 such

that y (K,θ) − L(K,θ)1+ν

1+ν is nondecreasing in K (lemma A2.(iv)) and R is nonincreasing in K

(lemma A2.(v)) , T is a well-defined self-map on P.

Proof. Notice, first, from the definition of Z and P that Z is strictly decreasing in p but strictly

increasing in P .

Step 1: T is well defined. Fix K > 0, θ and P . Note that as p → 0, Z (p, P,K,θ) → ∞ and as

p → UC (y (K,θ) , L (K,θ))−1, Z (p, P,K,θ) → −∞. For ω close enough to 1, r in nonincreasing in

K. Thus, Z is continuous and strictly decreasing in p, there exists a unique 0 < p (K,θ) < Y (K,θ)

such that Z (p (K,θ) , P,K,θ) = 0.

Step 2: T maps P onto itself. We must check properties (a)-(b) in the definition of P:

(a) Already verified in step 1.

(b) Pick 0 < K 6 K̂. Denote p = T (P ). By definition Z (p (K,θ) , P,K,θ) = 0. Evaluate Z at

p (K,θ) for K̂:

Z
(

p (K,θ) , P, K̂,θ
)

=
1

p (K,θ)
− βE





r
(

y
(

K̂,θ
)

− C
(

p (K,θ) , K̂,θ
)

,θ′
)

P
(

y
(

K̂,θ
)

− C
(

p (K,θ) , K̂,θ
)

,θ′
)



 .

Compute the following term:

y
(

K̂,θ
)

− C
(

p (K,θ) , K̂,θ
)

= y
(

K̂,θ
)

−
L
(

K̂,θ
)1+ν

1 + ν
− p (K,θ)

1
γ

=

(

1− σ − 1

σ

1− α

1 + ν

1 + sy
1− skl

)

y
(

K̂,θ
)

−m
(

K̂,θ
)

f + (1− δ) K̂ − p (K,θ)
1
γ

> y (K,θ)− C (p (K,θ) ,K,θ) ,

where the inequality is due to the fact that y − L1+ν

1+ν is increasing in K for ω close enough to 1

(lemma A2(iv)). Therefore,

Z
(

p (K,θ) , P, K̂,θ
)

> Z (p (K,θ) , P,K,θ) = 0,

which implies that p
(

K̂,θ
)

> p (K,θ) since Z is strictly decreasing in p.

Lemma A5. Under the conditions of lemma A4, T is continuous and monotone.

Proof. Step 1: Monotonicity.
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Take p 6 p̂ in the sense that p (K,θ) 6 p̂ (K,θ) for all (K,θ). Evaluate Z at

Z (Tp (K,θ) , p̂,K,θ) =
1

Tp (K,θ)
− βE





r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

p̂
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)





> Z (Tp (K,θ) , p,K,θ) = 0,

which implies that T p̂ (K,θ) > Tp (K,θ). Therefore, Tp 6 T p̂.

Step 2: Continuity.

Fix p ∈ P. Pick ε > 0 and some p̂ ∈ P such that ‖p̂− p‖ 6 ε. Fix K > 0,θ ∈ Θ2. For all

p̃ ∈ R,

Z (p̃, p̂,K,θ) =
1

p̃
− βE





r
(

y (K,θ)−C
(

p̃, K̂,θ
)

,θ′
)

p̂
(

y (K,θ)− C
(

p̃, K̂,θ
)

,θ′
)





6 1

p̃
− βE





r
(

y (K,θ)− C
(

p̃, K̂,θ
)

,θ′
)

p
(

y (K,θ)− C
(

p̃, K̂,θ
)

,θ′
)

+ ε



 ,

which means that T p̂ 6 T (p+ ε). A similar argument yields T p̂ > T (p− ε). By definition,

Z (T [p+ ε] (K,θ) , p+ ε,K, θ) =
1

T [p+ ε] (K,θ)
− βE





r
(

y (K,θ)− C
(

T [p+ ε] (K,θ) , K̂,θ
)

,θ′

)

p
(

y (K,θ)− C
(

T [p+ ε] (K,θ) , K̂,θ
)

, θ′

)

+ ε



 .

Using the fact that T (p+ ε) > Tp and r/p is decreasing in K, we obtain:

0 6 1

T [p+ ε] (K,θ)
− βE





r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

p
(

y (K,θ)−C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

+ ε



 .

Thus,

T [p+ ε] (K,θ) 6 β−1
E





r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

p
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

+ ε





−1

6 β−1
E





p
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)

+ ε

r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)



 (Jensen)

6 Tp (K,θ) + β−1εE

[

r
(

y (K,θ)− C
(

Tp (K,θ) , K̂,θ
)

,θ′
)−1

]

6 Tp (K,θ) + β−1r
(

y
(

K,θ
)

,θ
)−1

ε.

The same argument applied to p − ε yields Tp 6 T (p− ε) + β−1r
(

y
(

K,θ
)

,θ
)−1

ε. We can now
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conclude that T is a continuous mapping on P, since ‖p̂− p‖ 6 ε implies

‖T p̂− Tp‖ 6 max (‖T (p+ ε)− Tp‖ , ‖T (p− ε)− Tp‖)

6 β−1r
(

y
(

K,θ
)

,θ
)−1

ε.

Proposition A2. Under the conditions of lemma A4 and assumption 2, there exists a strictly

positive equilibrium function p∗ ∈ P.

Proof. The existence of a fixed point is simply given by Tarski’s fixed point theorem applied to the

monotone self-map T on the complete lattice (P,6).

We now construct a strictly positive fixed point p∗. Note that we are abusing language when using

the expression “strictly positive”, since our setup is such that p∗ (0,θ) = 0 for all θ. Thus, by

“strictly positive”, we mean that p∗ (K,θ) > 0 for all K > 0. We proceed in three steps.

Step 1. Define the sequence (pn)n>0 such that p0 (K,θ) = UC (y (K,θ) , L (K,θ))−1 and pn = T np0.

By construction, the first iteration is mapped downward (p1 6 p0) and we obtain a decreasing se-

quence which converges pointwise towards a function p∗. Clearly, p∗ = inf
n>0

pn so p∗ ∈ P. Further-

more, since T is continuous, p∗ = Tp∗, so p∗ is a fixed point of T .

Step 2. We first show that p∗ is not 0. From assumption 2, take K−such that y (K−,θ) −
L(K−,θ)

1+ν

1+ν > K− and βE
[

r
(

K−, θ, θ′
)

| θ
]

6 1. Pick an α > 0 such that C (α,K−,θ) <

y (K−,θ) − K−, i.e., such that 0 < α
1
γ < y (K−,θ) − L(K−,θ)

1+ν

1+ν − K−. Assume some p ∈ P

is such that p (K−, θ, θ′) > α for all θ′, then we show that Tp (K−,θ) > α by simply evaluating

Z (α, p,K−,θ):

Z
(

α, p,K−,θ
)

=
1

α
− βE





r
(

y (K−,θ)− C (α,K−,θ) , θ, θ′
)

p
(

y (K−,θ)− C (α,K−,θ) , θ, θ′
)





> 1

α
− βE





r
(

K−, θ, θ′
)

p
(

K−, θ, θ′
)



 > 1

α
− β

α
E

[

r
(

K−, θ, θ′
)]

> 0.

This establishes that Tp (K−,θ) > α. Since we start our iterations with

p0
(

K−,θ
)

= UC

(

y
(

K−,θ
)

, L
(

K−,θ
))−1

,

i.e., such that C (p0,K
−, θ, θ′) = y (K−, θ, θ′) and therefore p0 (K

−, θ, θ′) > α, we have p∗ (K−, θ, θ′) >
α > 0.

Step 3. We now want to show that p∗ is strictly positive for all K > 0. Assume, by contradiction,

that p∗ is not strictly positive. This means, that there exists (K0,θ0) such that p∗ (K0,θ0) = 0.
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Since p∗ is increasing in all its arguments, this means that p∗ (K,θ) = 0 for all K 6 K0. Define

K̃ = sup
K6K−

{p∗ (K,θ) = 0} .

With the assumption that p∗ is not strictly positive, K̃ > 0. Since K̃ 6 K−, then we have that

y
(

K̃,θ
)

− L(K̃,θ)
1+ν

1+ν > K̃. The right hand side of the Euler equation evaluated at K̃ and θ gives

0 6 βE





r
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)

p∗
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)



 6 βE





r
(

K̃,θ′
)

p∗
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)



 ,

which is finite since p∗
(

y
(

K̃,θ
)

− C
(

0, K̃,θ
)

,θ′
)

> 0. Thus, we obtain a contradiction since

p∗
(

K̃, θ
)

= 0 cannot be a solution. Therefore, K̃ must be 0 and p∗ is strictly positive everywhere

except at K = 0.

Uniqueness

The proof for uniqueness relies on showing that the operator T is pseudo-concave. The following

definitions are useful for that purpose. First, define a pseudo-concave operator:

Definition 7. A monotone operator T : P −→ P is pseudo-concave if for any strictly positive

p ∈ P and t ∈ (0, 1), T (tp) (K,θ) > tTp (K,θ) for all K > 0, θ ∈ Θ2.

We now define the concept of K0-monotonicity for an operator.

Definition 8. An operator T : P −→ P is K0-monotone if it is monotone and if, for any strictly

positive fixed point p∗, there exists K0 > 0 such that for any 0 6 K1 6 K0 and any p ∈ P such

that p (K,θ) 6 p∗ (K,θ) ,∀K > K1,θ, then

p∗ (K,θ) > Tp (K,θ) ,∀K > K1,θ.

We now proceed to show that T is K0-monotone, which we will then use to prove its pseudo-

concavity. In order to do so, the following preliminary result is useful:

Lemma A6. Under the conditions of lemma A4, suppose P ∈ P and let p = T (P ), then for all
(

θ−1, θ̂−1

)

∈ Θ2,

∣

∣

∣
C
(

p
(

K, θ̂−1, θ
)

,K, θ̂−1, θ
)

−C (p (K, θ−1, θ) ,K, θ−1, θ)
∣

∣

∣
6
∣

∣

∣
y
(

K, θ̂−1, θ
)

− y (K, θ−1, θ)
∣

∣

∣
.

Proof. Pick
(

θ−1, θ̂−1

)

∈ Θ2 and assume WLOG that Y
(

K, θ̂−1, θ
)

> Y (K, θ−1, θ) and that ω
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has been chosen close enough to 1 that

y
(

K, θ̂−1, θ
)

−
L
(

K, θ̂−1, θ
)1+ν

1 + ν
> y (K, θ−1, θ)−

L (K, θ−1, θ)
1+ν

1 + ν
.

Step 1. By definition Z (p (K, θ−1, θ) , P,K, θ−1, θ) = 0. Evaluate Z
(

p̃, P,K, θ̂−1, θ
)

at p̃ such that

C
(

p̃, P,K, θ̂−1, θ
)

= C (p (K, θ−1, θ) ,K, θ−1, θ) + y
(

K, θ̂−1, θ
)

− y (K, θ−1, θ) ,

in other words,

p̃
1
γ +

L
(

K, θ̂−1, θ
)1+ν

1 + ν
= p

1
γ +

L (K, θ−1, θ)
1+ν

1 + ν
+ y

(

K, θ̂−1, θ
)

− y (K, θ−1, θ) .

Assume WLOG that p̃ > p (K, θ−1, θ). Then, we have

Z
(

p̃, P,K, θ̂−1, θ
)

=
1

p̃
− βE





r
(

y
(

K, θ̂−1, θ
)

− C
(

p̃,K, θ̂−1, θ
)

, θ, θ′
)

P
(

y
(

K, θ̂−1, θ
)

− C
(

p̃,K, θ̂−1, θ
)

, θ, θ′
)





=
1

p̃
− βE





r
(

y (K, θ−1, θ)−C (p̃,K, θ−1, θ) , θ, θ
′
)

P
(

y (K, θ−1, θ)− C (p̃,K, θ−1, θ) , θ, θ′
)





6 0,

which tells us that p
(

K, θ̂−1, θ
)

6 p̃. Thus, we have:

C
(

p
(

K, θ̂−1, θ
)

,K, θ̂−1, θ
)

−C (p (K, θ−1, θ) ,K, θ−1, θ)

6 C
(

p̃,K, θ̂−1, θ
)

− C (p (K, θ−1, θ) ,K, θ−1, θ)

6 y
(

K, θ̂−1, θ
)

− y (K, θ−1, θ) .

Step 2. We now evaluate the other side of the inequality. Evaluate Z
(

p (K, θ−1, θ) , P,K, θ̂−1, θ
)

:

Z
(

p (K, θ−1, θ) , P,K, θ̂−1, θ
)

=
1

p (K, θ−1, θ)
− βE





r
(

y
(

K, θ̂−1, θ
)

− C
(

p (K, θ−1, θ) ,K, θ̂−1, θ
)

, θ, θ′
)

P
(

y
(

K, θ̂−1, θ
)

− C
(

p (K, θ−1, θ) ,K, θ̂−1, θ
)

, θ, θ′
)





> 1

p (K, θ−1, θ)
− βE





r
(

y (K, θ−1, θ)− C (p (K, θ−1, θ) ,K, θ−1, θ) , θ, θ
′
)

P
(

y (K, θ−1, θ)− C (p (K, θ−1, θ) ,K, θ−1, θ) , θ, θ′
)



 ,
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which implies that p
(

K, θ̂−1, θ
)

> p (K, θ−1, θ). Therefore,

C
(

p
(

K, θ̂−1, θ
)

,K, θ̂−1, θ
)

−C (p (K, θ−1, θ) ,K, θ−1, θ) > 0,

which establishes the desired result.

Lemma A7. Under the conditions of lemma A4 and assumption 2, T is K0-monotone.

Proof. The proof proceeds in two steps.

Step 1. Let us show that there exists K0 > 0 such that y (K,θ) − C (p∗ (K,θ) ,K,θ) > K,∀K 6
K0,∀θ. Pick a strictly positive fixed point p∗. By contradiction, suppose that for all K0 > 0, there

exists a K 6 K0 and a θ = (θ−1, θ)
′ such that y (K,θ) − C (p∗ (K,θ) ,K,θ) < K. Suppose, by

contradiction, that y (K, θ, θ)− C (p∗ (K, θ, θ) ,K, θ, θ) > K, then we would have

C (p∗ (K,θ) ,K,θ)− C (p∗ (K, θ, θ) ,K, θ, θ) > y (K, θ−1, θ)− y (K, θ, θ) ,

which cannot be true for p∗ ∈ P according to lemma A6. Therefore, y (K, θ, θ)−C (p∗ (K, θ, θ) ,K, θ, θ) <

K. By the definition of p∗:

1

p∗ (K, θ, θ)
= βE

[

r (y (K, θ, θ)− C (p∗ (K, θ, θ) ,K, θ, θ) , θ, θ′)
p∗ (y (K, θ, θ)− C (p∗ (K, θ, θ) ,K, θ, θ) , θ, θ′)

]

> βE

[

r (K, θ, θ′)
p∗ (K, θ, θ′)

]

= β

∫

r (K, θ, θ′)
p∗ (K, θ, θ′)

π
(

dθ′, θ
)

,

where π (dθ′, θ) denotes the marginal density of θ′ conditional on θ. Since p∗ (K, θ, θ′) is weakly

increasing in θ′, we have

β

∫

r (K, θ, θ′)
p∗ (K, θ, θ′)

π
(

dθ′, θ
)

> β

p∗ (K, θ, θ)

∫

θ′6θ
r
(

K, θ, θ′
)

π
(

dθ′, θ
)

=
β

p∗ (K, θ, θ)
r (K, θ, θ)P

(

θ′ 6 θ
)

,

where r (K, θ, θ) > 0. Given our specification of the stochastic process followed by θ, denote π

the lower bound on the probability that θ′ falls below current θ, i.e., π = inf
θ∈Θ

P (θ′ 6 θ | θ). In our

setting, π exists and is strictly positive. Since r (K, θ, θ) → ∞ as K → 0, we can choose K0 small

enough that βr (K, θ, θ) π > 1, then

1

p∗ (K, θ, θ)
>

β

p∗ (K, θ, θ)
r (K, θ, θ)π,

>
1

p∗ (K, θ, θ)
.
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Hence, we have a contradiction.

Step 2. Keeping the same K0 given by step 1, pick a K1 6 K0 with a p such that p (K,θ) 6
p∗ (K,θ) ,∀K > K1,∀θ. Since y (K,θ)−C (p∗ (K,θ) ,K,θ) > K1, then for all K > K1 and θ,θ’:

p
(

y (K,θ)− C (p∗ (K,θ) ,K,θ) ,θ′) 6 p∗
(

y (K,θ)− C (p∗ (K,θ) ,K,θ) ,θ′)

Therefore, Z (p∗ (K,θ) , p∗ (K,θ) ,K,θ) = 0 > Z (p∗ (K,θ) , p (K,θ) ,K,θ), which implies that

Tp (K,θ) 6 p∗ (K,θ). T is K0-monotone.

Lemma A8. Under the conditions of lemma A4 and assumption 2, T is pseudo-concave.

Proof. We want for t ∈ (0, 1) that T [tp] (K,θ) > tT [p] (K,θ) for K > 0. Since Z is strictly

decreasing in p, it is equivalent to show that

0 = Z (T [tp] (K,θ) , tp,K,θ) < Z (tT [p] (K,θ) , tp,K,θ) .

Z (tT [p] (K,θ) , tp,K,θ)

=
1

tT [p] (K,θ)
− βE

[

r
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

tp
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

]

=
1

t

{

1

T [p] (K,θ)
− βE

[

r
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

p
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

]}

,

since C is strictly increasing in p, C (tT [p] (K,θ) ,K,θ) < C (T [p] (K,θ) ,K,θ). Since r
p is strictly

decreasing in K, then

Z (tAv, tv,K,θ) =
1

t

{

1

T [p] (K,θ)
− βE

[

r
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

p
(

y (K,θ)− C (tT [p] (K,θ) ,K,θ) ,θ′)

]}

>
1

T [p] (K,θ)
− βE

[

r
(

y (K,θ)−C (T [p] (K,θ) ,K,θ) ,θ′)

p
(

y (K,θ)− C (T [p] (K,θ) ,K,θ) ,θ′)

]

= 0,

which shows that T [tp] (K,θ) > tT [p] (K,θ) for K > 0. Therefore, T is a pseudo-concave mapping.

Proposition A3. Under the conditions of proposition A1, assumptions 1-2 and ω close enough

to 1 such that y (K,θ)− L(K,θ)1+ν

1+ν is nondecreasing in K and R is nonincreasing in K, there is a

unique strictly positive equilibrium p ∈ P.

Proof. T being K0-monotone, pseudo-concave has at most one strictly positive fixed point. Take

two fixed points p∗1 and p∗2. Suppose for some K > 0,θ ∈ Θ2, p∗1 (K,θ) < p∗2 (K,θ). Pick the

K0 from the K0-monotonicity and choose t ∈ (0, 1) such that p∗1 (K,θ) > tp∗2 (K,θ), i.e., choose
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t = inf
K>K0

p∗1(K,θ)
p∗2(K,θ) which is finite, strictly positive (recall that the p’s are increasing in K, strictly

positive and bounded) and strictly less than 1 by assumption. Then, by K0-monotonicity, for all

K > K0,

p∗1 (K,θ) > T [tp∗2] (K,θ)

> tT [p∗2] (K,θ)

> tp∗2 (K,θ)

which contradicts the fact that t was the infimum. Therefore, the equilibrium is unique.

E.5 Policy

Proposition 5. The competitive equilibrium with incomplete information is inefficient, but the

constrained efficient allocation can be implemented with a lump-sum tax on the household, an input

subsidy skl and a profit subsidy sπ to intermediate goods producers such that 1 − skl =
σ−1
σ and

1 + sπ = σ
σ−1 .

Proof. We define the constrained planner problem as selecting a schedule z (vj) of probabilities to

use the high technology as a function of an agent’s private signal vj and levels of production Yh

and Yl for technology levels. Define the planner’s Bellman equation

VSP (K, θ−1) = max
06z(·)61

Eθ

[

max
K ′,L,Ki,Li

U
(

Y −m (θ, z) f −K ′ + (1− δ)K,L
)

+ βVSP

(

K ′, θ
)

| θ−1

]

subject to

Y =

(
∫ 1

0
m (θ, z)Y

σ−1
σ

h + (1−m (θ, z))Y
σ−1
σ

l

)

σ
σ−1

Yi = Ai (θ)K
α
i L

1−α
i , i ∈ {h, l}

K = m (θ, z)Kh + (1−m (θ, z))Kl

L = m (θ, z)Lh + (1−m (θ, z))Ll

m (θ, z) =

∫ √
γvφ (

√
γv (v − θ)) z(v)dv.

The first-order conditions with respect to Ki and Li tell us that the marginal products are equalized
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across firms,

αY
σ−1
σ

−1

h Y
1
σ
Yh

Kh
= αY

σ−1
σ

−1

l Y
1
σ
Yl

Kl

(1− α)Y
σ−1
σ

−1

h Y
1
σ
Yh

Lh
= (1− α)Y

σ−1
σ

−1

l Y
1
σ
Yl

Ll
,

and we have equality between the marginal product of labor and the marginal rate of substitution,

(1− α)Y
σ−1
σ

−1

i Y
1
σ
Yi

Li
=

UL (C,L)

UC (C,L)
= Lν .

Solving this system of equation, we obtain the following efficient output level and labor,

YSP (K, θ,m) = (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν and LSP (K, θ,m) = (1− α)

1
α+ν

(

A (θ,m)Kα
)

1
α+ν .

(32)

The first order condition on z (v) is

Eθ

[√
γvφ (

√
γv (θ − v))UC (C,L)

(

Am (θ,m)

A (θ,m)
YSP − f

)

| θ−1

]

T 0,

with corresponding complementary slackness conditions. Substituting in the values of A and YSP ,

we get

Eθ

[√
γvφ (

√
γv (θ − v))UC (C,L)

(

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f

)

| θ−1

]

T 0.

It is now useful to notice that, since θ = ρθ−1 +
√
γθεθ and vj = θ +

√
γvεvj , with (εθ, εvj) unit

normals, then for any arbitrary function f (K, θ,m), the following equality holds

Eθ [f (K, θ,m) | θ−1, vj ] =

∫

f (K, θ,m)
√
γθφ (

√
γθ (θ − ρθ−1))

√
γvφ (

√
γv (v − θ)) dθ/π (v | θ−1)

= Eθ [f (K, θ,m)
√
γvφ (

√
γv (v − θ)) | θ−1] /π (v | θ−1) .

Thus, going back to the planner’s problem, a firm with signal v chooses the high technology with

positive probability if and only if

Eθ

[

UC (C,L)

(

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f

)

| θ−1, vj

]

> 0.

This problem is familiar and we recognize a condition similar to the one that characterizes the

solution of the global game. Using the same arguments as before, we know that the stochastic
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discount factor UC drops from the equation when γv → ∞, which simplifies the problem to

Eθ

[

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,m)Kα
)

1+ν
α+ν − f | θ−1, v

]

> 0.

Then, under the same hypothesis as proposition A1, i.e., that
√
γv
γθ

> 1√
2π

ωσ−1−1
σ−1 , we know that the

only solution to the above equation is a cutoff v̂SP (K, θ−1) such that z (v) = 1 for v > v̂SP (K, θ−1)

and z (v) = 0 for v < v̂SP (K, θ−1). The cutoff is such that

Eθ

[

1

σ − 1

ωσ−1 − 1

Ω (m)σ−1 (1− α)
1−α
α+ν

(

A (θ,Φ (
√
γv (θ − v̂SP )))K

α
)

1+ν
α+ν − f | θ−1, v̂SP

]

= 0. (33)

Comparing the two conditions (32) and (33) to that of the competitive economy, we see that

the conditions coincide either with the input subsidy 1 − skl =
σ−1
σ so as to offset the markup

and the profit subsidy 1 + sπ = σ
σ−1 to induce the right entry; or more simply, just using a sales

subsidy 1 + sy = σ
σ−1 . Under the conditions of proposition A3, we know that these two first order

conditions uniquely determine the equilibrium. Therefore, the two economies coincide under this

optimal sales subsidy and the economy without subsidy is inefficient.

Proposition 6. Under GHH preferences, for γv large, an unforeseen one-time increase in govern-

ment spending financed by lump-sum taxes reduces welfare.

Proof. Consider the case of an unforeseen shock to government spending G0 > 0 that lasts only one

period, Gt = 0 for t > 1 financed by a lump-sum tax T0 = G0.
30 Notice that, under our assumption

of GHH preferences, our expressions for equilibrium output Y (K, θ,m) and labor L (K, θ,m) from

proposition 1 remain unaffected by government spending. The only channel by which spending may

influence output is through the coordination game by affecting the measure of firms with the high

technology m. As shown in lemma A1, as γv becomes large, the within-period uncertainty vanishes

and the stochastic discount factor disappears from the surplus from choosing the high technology

which, in the absence of other subsidies, can be approximated by

∆Π̃ (K, θ−1, vj,m) = Eθ

[

1

σ

ωσ−1 − 1

Ω (m)σ−1

[

(1− α)
σ − 1

σ

1 + sy
1− skl

]
1−α
α+ν

A (θ,m)
1+ν
α+ν Kα 1+ν

α+ν − f | θ−1, vj

]

.

As a result, when γv is large, equilibrium consumption C drops from the equation and the solu-

tion v̂ (K, θ−1) to the global game is independent from government spending G. The equilibrium

production Y is thus unaffected.

Consider now the equilibrium allocation
{

Ct

(

θt
)

,Kt+1

(

θt
)}

in the economy hit by the gov-

ernment spending shock. Because equilibrium production Yt

(

θt
)

and labor Lt

(

θt
)

are unaffected

by government spending, hence prices as well, the same allocation is feasible in an economy with-

out government spending: it satisfies both the household’s budget constraint and the aggregate

30Ricardian equivalence obtains in our environment and the actual timing of taxes is irrelevant.
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resource constraint with some extra resources left from the unused government consumption. By

increasing consumption in period 0 by G0 exactly, the household can choose an allocation that

remains feasible and strictly increases its welfare. As a conclusion, welfare in the economy without

spending is strictly greater than in the economy with government spending shock.
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